Пусконаладочные работы системы отопления: как наладить систему отопления честного дома, опрессовка и регулировка

Как наладить, отрегулировать, отбалансировать систему обогрева

Нередкая ситуация – один радиатор горячее другого, чего не должно быть. Или в одном месте дома прохладно, а в другом жарко. Значит, систему отопления нужно как-то наладить, как говорят специалисты, – отбалансировать. Возможно, что для этого не нужно вовсе вызывать сантехника, а отрегулировать отопление можно и своими руками.

Для этого на каждом радиаторе или между плечами системы должны быть установлены регулировочные краны или (и) балансировочные клапаны.

Но в некоторых случаях систему нужно переделывать. Далее подробней о возможных неполадках в отоплении и правилах балансировки.

Если не хватает мощности радиаторов

Бывает и так, что отбалансировать систему отопления затруднительно, так как распределение мощности радиаторов совсем не соответствует теплопотерям комнат.

Рекомендации по подбору радиаторов следующие: на 10 м кв. площади – 1 кВт, но это значение умножают на 1,2 если в комнате одно окно, 1,3 если окно большое, 1,4 если два окна и комната угловая, 1,5 если там уже 3 окна или большая площадь остекления.

Кроме того мощность радиатора указывается для температуры 90 градусов, но ведь топить собираемся максимум на 70 градусов, не так ли? Значит, теплопотери умножаем еще на 1,3. А если применяется низкотемпературный обогрев – не более 50 градусов, то еще раз умножаем на 1,3.
Почему низкотемпературный обогрев самый комфортный и экономичный? Подробней об экономичных конденсационных котлах

Мощность одной секции алюминиевого, биметаталлического радиатора (толщиной и шириной примерно 80 мм), или чугунного радиатора (старого образца типа МС-140) составляет приблизительно 170 — 180 Вт. Наборку из 7 секций принято считать не менее чем киловатной.

Кроме того, радиаторы должны устанавливаться в характерных местах, чтобы создавать тепловую завесу источнику холода. Типично – под окнами, возле двери.

Лучше распределить количество секций батарей (размеров) в соответствии с теплопотерями и особенностями системы отопления, чем балансировать, прикрывать ток жидкости.

Простые причины неполадок системы отопления

Возможно, что в системе отопления находится воздух и по этой причине теплоноситель плохо поступает к одному или нескольким отопительным приборам.

В самых высоких местах в трубопроводе устанавливают воздушные краны (краны Маевского) которые можно открыть вручную. Или автоматические воздухоотводчики. Краны Маевского обычно устанавливают и на каждом радиаторе. Пройдитесь по системе, откройте краны, спустите воздух.

Еще причине плохой работы – засорение, в первую очередь, фильтрующего элемента. Открутите фильтр и прочистите его.
Перед любой балансировкой системы отопления прочистите фильтр.

В неправильно-собранных системах, кроме того, может быть засорение в нижних точках на перепадах уровня трубопровода, и завоздушивание в верхних точках, например трубопровод обведен вокруг двери без воздухоотводчика.

Балансировка системы с помощью кранов-регуляторов

Возможно, что самая конструкция системы требует балансировки. Например, используется одно длинное плечо, а второе короткое.

Или длина плеча тупиковой схемы слишком большая. Или применяется лучевая схема, которая требует настройки изначально. А бывает, что делают архаичные однотрубные системы с недостатками. В любом случае в итоге имеется значительный неравномерный нагрев.

Итак, на радиаторах установлены балансировочные клапаны, остается сделать так, чтобы температура всех радиаторов была бы примерно одинаковой.

Принцип балансировки простейший – не закрывать (максимально открыть) краны на самых холодных и немного «прикрутить» самые горячие. В результате на холодные пойдет больше теплоносителя, на горячие меньше, температура их выровняется.

Пример, как отрегулировать отопление в одноэтажном доме

Характерный пример – не удалось сделать два плеча тупиковой схемы, так как прокладке труб мешала дверь, сделали одно плечо и насадили на него «аж» 7 радиаторов.

В результате температура последнего в плече на 9 градусов меньше чем ближайшего к котлу. Можно сделать такие действия – на последних 3 радиаторах краны полностью оставить открытые. На первом балансировочный кран открыть из положения полного закрытия на 1,5 оборота, на втором – на 2 оборота, на 3 и 4 на 2,5 оборота.

Подразумевается, что всего балансировочный клапан регулируется в 4,5 оборота, а длина трубопроводов в пределах небольшого дома. Но регуляторы бывают разной конструкции, длины разные, поэтому в каждом случае – свое количество оборотов.

После балансировки нужно выждать минут 20 затем снова измерять температуру входящего патрубка радиатора, возможно придется дополнительно что-то регулировать на четверть оборота…

Принципы регулировки

Создавать значительные закрытия нельзя.
Основной принцип балансировки – максимально открыть путь для движения теплоносителя. Закрытие – это вынужденная мера.

Поэтому добиться в данном примере одинаковой температуры не стоит. Правильно согласиться с тем, что первый будет горячее на 3 – 4 градуса при температуре теплоносителя в 80 градусов и на пару градусов при низкотемпературном обогреве 50 градусов.

А чем мерить-то? Профессионалы посмотрели бы на каждый радиатор через тепловизор и сделали теплофото. Но можно обойтись и контактными термометрами – специальные приборы для монтажников-отопителей. Но в быту чаще меряют просто рукой и судят по ощущениям. Чувствительная в этом отношении мочка уха – но стоит ли ухом тереть по радиаторам…

Пример для двухэтажного дома

Еще характерный пример, когда проектировщики-монтажники сумели так сделать систему отопления, что установили и на первом и на втором этажах примерно равную мощность радиаторов (площади примерно равны), причем балансировку этажей относительно друг друга впаять забыли.

В результате на первом этаже все еще холодно, а на втором этаже уже жара.

Опять выручат балансировки установленные непосредственно на радиаторах. На втором этаже просто отрываем краны на 2 оборота вместо полных 4,5, уменьшив, таким образом ток жидкости процентов на 30. Снизив энергоотдачу, выравниваем температурный режим, при необходимости закрываем больше…

Схема на которой отсутствует возможность балансировки между двумя плечами — типичная ошибка в самодельных системах.

Наладка по проекту

При обычном грамотном монтаже современной системы отопления балансировка не нужна вовсе, схема делается так, что все радиаторы греют оптимально. К тому же зачастую их автоматизируют термоголовками, с помощью которых можно задать температуру в отдельной комнате.

Небольшую сумятицу в вопросы наладки отопления вносят проектировщики и проектные данные. В проекте закладывается количество проходящего теплоносителя и балансировка каждого радиатора – насколько оборотов должен быть повернут каждый балансировочный кран определенного типа.

Этим достигается некая точность выполнения проектных решений. Но для пользователя это практически не имеет значения, так как соблюдение проектной точности весьма мало влияет на конечный результат. А большие значения балансировки (как в примерах выше) в проекте заложены быть не могут. Поэтому на очень точное регулирование в соответствии с проектом можно не обращать внимания.

Шумящий радиатор

Еще один момент, который требует решения, – слишком большое количество теплоносителя проходящего через радиатор. При этом радиатор шумит и это неприятно. Причины – неправильная схема отопления, забалансированность (закрытость) других радиаторов, слишком мощный насос в системе. Все это нужно устранять.

Слишком мощный насос – болезнь самодельных систем отопления, потому как домашним мастерам «кажется», что кашу маслом не испортишь. Но здесь получается другое — немалые деньги на ветер и шум в радиаторах. Как подбирается насос к системе отопления…
Шумящий радиатор требует балансировки системы или ее переделки.

Сложный случай – закрытие проходного отверстия трубопровода во время монтажа. Выявить дефектное место сложно, бывает нужно переделывать целое плечо трубопровода. Подобное характерно для полипропиленовых труб, в которых возможны наплывы материала при пайке. Подробней – как паять полипропилен и не допустить брака

Пусконаладочные работы систем отопления

Прежде чем ввести в работу систему отопления, необходимо выполнить ряд подготовительных работ, провести испытания и наладить взаимодействие различных агрегатов друг с другом. Все это входит в пусконаладочные работы системы отопления, цель которых – выявление и устранение недостатков и ошибок, совершенных во время монтажа, а также приведение всей системы в соответствие с установленными для нее нормами. В результате этих работ клиент получает надежную, производительную и эффективную систему. Стоимость пусконаладочных работ отопления полностью окупается последующей безпроблемной эксплуатацией и сохранностью оборудования.

Состав пусконаладочных работ

  • Работы по пуско-наладке выполняются после монтажа. В них включается:
  • Подключение котла к газовой магистрали (если применяется газовый котел);
  • Настройка систем безопасности;
  • Установка стабилизатора напряжения и подключение к нему котла;
  • Согласование работы котла и бойлера косвенного нагрева (если он применяется);
  • Подключение датчиков температуры и их наладка;
  • Испытание и опрессовка систем отопления;
  • Заправка системы теплоносителем;
  • Стравливание воздуха из системы и ее балансировка;
  • апуск системы в работу;

По завершении составляется отчет о пусконаладочных работах системы отопления, в котором перечисляется состав выполненных работ и делаются выводы относительно дальнейшей эксплуатации и улучшения работы оборудования.

Суть процессов испытания системы и ее запуск

Как видно, пусконаладочные работы состоят из большого количества операций, важнейшие из которых связаны с испытаниями системы отопления. Рассмотрим подробнее один из важных этапов пуско-наладки – опрессовку системы. Выполнять ее необходимо для выявления всех возможных мест протечки. Суть процедуры заключается в нагнетании в систему воды или воздуха под давлением, в несколько раз превышающем рабочее. Во время опрессовки следует тщательно проверить все соединения. Если при испытании применяется воздух, места соединения трубопровода нужно смазать мыльным раствором.

Другой этап проверки – тепловое испытание системы. Его цель – прогрев всех отопительных приборов водой с температурой 60-70 0С в течение 7 часов. При этом производится наблюдение за степенью прогрева отопительных приборов, температурой теплоносителя на выходе и входе в котел и температурой воздуха. Если все показатели максимально приближены к проектным – система успешно выдержала тепловое испытание. Если нет, тогда производится дальнейшая регулировка. Перед заполнением системы водой для испытания, ее необходимо промыть, для удаления средств консервации оборудования и прочего мусора из труб.

Для запуска системы необходимо заполнить ее теплоносителем, стравить воздух и запустить котел в работу. Чтобы заполнить систему теплоносителем открывается кран подпитки, расположение которого можно узнать по документации к котельному оборудованию. Когда давление в системе достигает нужной величины, кран перекрывается и производится первый пуск котла. После включения циркуляционного насоса с него следует стравить воздух, немного отвернув винт по центру. Когда из-под винта потечет вода, его следует завернуть до упора. После этого электроника запустит в работу все системы котла, и некоторое время еще будет удаляться воздух из системы, о чем сообщат булькающие звуки. Когда работа системы нормализуется следует проверить давление, и при необходимости довести его до нормы, пополнив количество теплоносителя.

После первого пуска отопления можно произвести наладку системы с помощью кранов для регулировки радиаторов. Нужно добиться того, чтобы энергии теплоносителя хватало для прогрева последнего радиатора в цепи. На такую регулировку может уйти несколько дней и производится она уже в процессе эксплуатации. Переживать об этом не стоит, ведь в целом система уже отлажена и работает в нормальном режиме.

Методы самостоятельной балансировки водяного отопления в частном доме

Закон гидравлики: любая протекающая жидкость выбирает путь наименьшего сопротивления. В отопительной сети частного дома правило действует так: толкаемый насосом теплоноситель стремится пройти через первый радиатор либо самый короткий контур теплых полов. В результате отдаленные комнаты здания прогреваются значительно хуже. Для равномерного распределения потоков необходима гидравлическая балансировка системы отопления. Расскажем, как отрегулировать батареи и петли напольного обогрева своими руками.

Когда нужно балансировать систему

Теоретически, регулировка радиаторов отопления необходима в любом случае. Инженер-проектировщик, разрабатывая и рассчитывая водяную систему, закладывает расход теплоносителя на каждую батарею и контур напольного обогрева. После монтажа, заполнения и опрессовки трубопроводной сети исполнитель обязан отрегулировать подачу тепла, ориентируясь на расчетные параметры в проекте.

Важный момент. Расчет потребности в тепле и соответствующего расхода нагретой воды делается для самых неблагоприятных условий – минимальной уличной температуре. Поэтому вначале настройки все радиаторные и другие регулировочные вентили полностью открываются, а котел выводится в максимальный рабочий режим.

Поскольку среднестатистического домовладельца заботит лишь тепло и комфорт внутри жилища, самому браться за балансировку рекомендуется в таких случаях:

  1. Ближние к котлу батареи нагреваются заметно сильнее дальних радиаторов, соответственно, в комнатах жарко или прохладно (слишком большой перепад температур).
  2. Один из радиаторов издает явственный шум — журчание протекающей воды.
  3. Замоноличенные в стяжку трубы прогревают полы неравномерно.
  4. В процессе наладки новой отопительной разводки, собранной своими руками.
Читайте также:  Дровяная печь для бани с баком для воды: выбор, изготовление своими руками

Если при грамотно смонтированном отоплении температура в дальних комнатах существенно ниже, система нуждается в балансировке

Примечание. Подразумевается, что арматура, оборудование и приборы отопления подобраны правильно, система заполнена теплоносителем, воздушные пробки и прочие дефекты отсутствуют. Иначе заниматься гидравлической балансировкой бессмысленно – получите нулевой результат.

Когда не следует регулировать раздачу теплоносителя батареям:

  1. Если радиаторная сеть и теплые полы работают без нареканий. Лишний раз крутить вентили не стоит – по неопытности можете сделать хуже.
  2. При выявлении различных неполадок – воздух в батареях, протечка, засор радиаторных либо балансировочных вентилей, разрыв мембраны расширительного бака и тому подобное. Сначала устраните неисправность и проверьте работоспособность отопления. Возможно, регулировка не понадобится.
  3. Категорически не рекомендуется вмешиваться в работу центрального отопления многоквартирного дома, врезать в общие стояки дополнительные краны и клапаны. Исключение – многоэтажные новостройки с индивидуальными тепловыми вводами в каждую квартиру.

Также не рекомендуется «прижимать» проток через батарею с помощью обычного шарового крана. Нормальное положение штока – полностью открыт либо закрыт, в промежуточной позиции арматура долго не прослужит.

Проток воды регулируется исключительно балансовыми кранами, шаровые открыты на 100%

Инструменты и приборы для балансировки

Чтобы самостоятельно произвести регулировку радиаторов отопления и теплых полов частного дома, понадобится минимум приспособлений:

  • термометр электронный контактный;
  • отвертка;
  • барашек или ключ для вращения штока балансировочного клапана (обычно применяется шестигранник);
  • лист бумаги, карандаш.

Справка. Профессиональные сантехники часто используют тепловизор, дающий ясную картину прогрева всех отопительных приборов. Аппарат дорогостоящий, так что обойдемся более простыми средствами.

Вместо указанного термометра допускается использование дистанционного (бесконтактного) пирометра. Учтите: температуру блестящих поверхностей прибор измеряет с небольшой погрешностью. Замечание касается радиаторов с новым лакокрасочным покрытием.

Если у вас отсутствует схема разводки по жилому зданию, перед началом работ стоит зарисовать ее на бумаге. Эскиз поможет разобраться в очередности подключения батарей к магистралям и отдаленности от помещения топочной. Также сделайте промывку грязевика на входе в котел и разогрейте систему до температуры 70—80 °С независимо от уличной погоды.

Большим подспорьем в настройке является современный циркуляционный насос Grundfos Alpha 3, который через мобильное приложение точно показывает глубину регулировок. Минус – приличная цена агрегата (начинается от 240 у. е.).

Регулировка радиаторной сети

Метод балансировки, практикуемый нашим экспертом, одинаково подходит для закрытых однотрубных и двухтрубных систем отопления загородных коттеджей. Коллекторная разводка и теплые полы регулируются другим способом, о чем мы расскажем в следующем разделе.

Суть методики заключается в измерении температуры поверхности всех радиаторов и устранении разницы путем ограничения расхода теплоносителя балансировочными кранами. Как отрегулировать батареи отопления, пользуясь термометром:

    Прогрейте теплоноситель до 70—80 °С, полностью откройте все регулировочные клапаны. Если котел не показывает реальную температуру воды на подаче, определите ее сами, приложив измеритель к металлическому выходному патрубку.

Изначально кольцо предустановки клапана настраивается на максимальный проток

  • Замерьте температуру поверхности первого на подаче радиатора в двух местах – около подающей и обратной подводки. Если разница лежит в пределах 10 градусов, батарея прогревается нормально.
  • Повторите операцию на всех отопительных приборах, записывая показания. Двигайтесь вдоль каждой ветви отопления, поочередно регистрируя температуру батарей вплоть до последней.
  • Если разность температур на подаче первого и последнего радиатора не превышает 2 °С, прикройте вентили первых двух батарей на 0.5—1 оборот и повторите замеры.

    Замер делается на подающем и обратном патрубке, максимально допустимая разница — 10 градусов

  • Когда разница достигает 3—7 градусов, регулировочные краны первых обогревателей закрываются на 50—70% (считайте по оборотам вентилей), средних – на 30—40%, последние приборы остаются полностью открытыми.
  • Обождите 20—30 минут, позволив батареям прогреться после новых настроек, затем повторите измерения. Задача – достигнуть нормальной разницы 2 °С (для протяженных магистралей допускается 3 градуса) между последним и первым прибором.
  • Повторяйте процедуру настройки, закручивая балансовые вентили на четверть или пол-оборота, пока не добьетесь одинакового прогрева всех батарей. «Прослушайте» каждый радиатор на предмет шума, указывающего на повышенный расход теплоносителя.
  • Важный момент. Не увлекайтесь чрезмерным закручиванием кранов, экономии таким образом не получите. Сравнивайте температуру на входе и выходе обогревателя – если разность превысит 10 °С, вентиль нужно отпускать. Из-за слишком малого расхода теплоносителя в комнате станет холодно.

    Приблизительная регулировка батарей закрытой двухтрубной системы показана на примере схемы отопления двухэтажного дома. Почему приблизительная: число закрываемых батарей и количество оборотов крана сугубо индивидуально для каждой разводки, необходимо разбираться по месту. Если сомневаетесь в правильности своих действий, придавливайте теплоноситель постепенно, делая пол-оборота вентиля и повторяя замеры.

    Как правило, однотрубная «ленинградка» из 3—4 батарей не нуждается в балансировке, достаточно слегка «прижать» первый радиатор. В попутной разводке (петле Тихельмана) нужно ограничивать первый и последний прибор. Нагляднее порядок регулировки покажет эксперт на видео:

    Теплые полы и лучевая разводка

    Поскольку контуры напольного обогрева и радиаторы лучевой схемы подключаются к общей гребенке, балансировка производится непосредственно на коллекторе. Способ настройки зависит от наличия ротаметров – прозрачных колб расходомеров, устанавливаемых на подающей или обратной линии.

    Чтобы правильно настроить подачу теплоносителя по ротаметрам, следует рассчитать проток воды по каждой петле по формуле:

    • G – массовый расход нагретой воды, протекающей по контуру, кг/ч;
    • Q – количество тепла, которое должен выделить контур либо радиатор в помещение, Вт;
    • Δt – разница температур на входе и выходе из петли, принимается расчетное значение 10 °С.

    Мощность одного напольного контура Q определяется исходя из потребности в тепле отдельного помещения. Параметр считается по удельному соотношению 100 Вт/м² площади комнаты либо по методике вычисления нагрузки на отопление. Шкалы расходомеров размечены в л/мин, значит, результат нужно разделить на 60.

    Пример расчета. На обогрев комнаты площадью 10 квадратов требуется 1 кВт теплоты. Потребление теплоносителя составит 0.86 х 1000 / 10 = 86 кг/ч или 86 / 60 ≈ 1.43 л/мин.

    Уточнение. Если помещение большой площади поделено на 2 одинаковых греющих монолита с отдельными водяными петлями, расчетное значение расхода тоже делим пополам.

    Дальнейшая балансировка петель теплых полов производится согласно инструкции:

    1. В заполненной и опрессованной системе включите циркуляционный насос напольного отопления. Котел запускать не обязательно.
    2. С помощью колпачков ручной регулировки закройте все термостатические вентили на второй части гребенки.
    3. Полностью откройте первый вентиль и настройте соответствующий ему ротаметр. Нужный объем протока выставляется вращением нижнего кольца расходомера.
    4. После настройки снова закройте вентиль и переходите к следующему контуру. В конце откройте все регуляторы и еще раз проверьте расход воды по ротаметрам.

    Справка. На коллекторах разных производителей расходомеры ставятся на подающей либо обратной гребенке (конструктивно они тоже отличаются). Для регулировки максимального протока расположение ротаметров роли не играет.

    Батареи лучевой разводки балансируются аналогичным образом. Для верности можно совместить 2 варианта – по расчетному расходу и температуре поверхности радиатора (способ описан в предыдущем разделе).

    Схема регулирования потока ротаметром. Расход через каждый контур показывают контрольные шайбы в прозрачных колбах, единица измерения – литры в минуту

    Если в целях экономии вас угораздило купить коллектор без ротаметров, настройка растянется на несколько дней. Задача – добиться одинаковой температуры в обратных трубопроводах всех петель. То есть, первичная установка делается примерно по мощности и длине контура, затем измеряется температура обратки и корректируется величина протока.

    Для проверки балансировки теплого пола надо запустить отопительный котел. Негативный момент: после корректировки расхода придется ждать несколько часов, пока толща бетона прогреется, а температура обратных подводок стабилизируется.

    Заключение

    Радиаторная отопительная сеть с ветвями небольшой протяженности балансируется без особых проблем. Если длина плеч двухтрубной разводки сильно разнится, задача несколько усложняется. Но не стоит волноваться – перепад 3 градуса между последним и первым радиатором в данном случае считается нормой. Учтите один нюанс: балансировка отопления ведется при максимальном нагреве системы, в рабочем режиме температура воды снизится до 50…60 °С, разность 3 °С тоже уменьшится.

    Наладка и регулировка систем водяного отопления

    В статье приведён принцип работы систем водяного отопления. Рассмотрены методы регулировки систем водяного двухтрубного отопления, которые осуществляются при наладке. Выделены преимущества и недостатки приведённых методов.

    Системы отопления, вентиляции и кондиционирования предназначены для создания и поддержания комфортных условий микроклимата для эффективной и плодотворной жизнедеятельности человека. Эффективная работа систем ОВиК во многом зависит от грамотно выполненного проекта, качественного монтажа и правильной эксплуатации. Отсюда также следует, что грамотный проект, качественный монтаж и правильная эксплуатация систем ОВиК возможна только при наличии соответствующих знаний и навыков у проектировщика.

    Данная статья посвящена вопросу регулировки систем отопления (СО).

    Система отопления предназначена для поддержания в помещении комфортной (требуемой) температуры воздуха. Также можно сказать, что работа системы отопления направлена на компенсацию теплопотерь в помещении. Достигается это возвратом в него требуемого количества тепла. Последнее генерируется источником тепла (котлом, котельной, тепловым насосом и др.) транспортируется теплоносителем (вода, воздух, пар и т.п.) по теплопроводам (трубопроводы, воздуховоды) к потребителю (отопительному прибору, тёплому полу, теплообменнику, калориферу и т.п.). В целом систему отопления можно представить следующим образом — рис. 1.

    Основываясь на основной задаче системы отопления — обеспечении потребителя требуемым количеством тепла — можно говорить об эффективности работы системы отопления. Оценивать эффективность можно по температуре в помещении, температуре и давлению теплоносителя, наличию его утечек, а также по равномерности распределения тепла по объекту. При этом эффективность работы системы отопления нас интересует как при вводе в эксплуатацию, так и в ходе использования.

    Системы водяного отопления с принудительной циркуляцией в обязательном порядке включают в себя следующие элементы:

    • источник тепла (котёл);
    • отопительный прибор;
    • циркуляционный насос;
    • расширительный бак;
    • трубопроводы, фитинги и трубопроводную арматуру (вентили, краны, воздухоотводчики, предохранительные клапаны и т.п.);
    • контрольно-измерительные приборы и система автоматизации.

    Отсутствие любого из этих элементов делает систему неработоспособной — полностью или частично. Нет расширительного бака — не будет происходить компенсация температурного расширения теплоносителя, но появится статическое давление. Это, в свою очередь, приведёт к наличию течей в системе, её нестабильной работе, сбоям в автоматике, если она есть. Нет насоса — практически полностью остановится циркуляция теплоносителя, к потребителю не дойдёт нужное количество тепла, и он замёрзнет. Нет котла — нет тепла. Нет отопительного прибора — мало тепла (функцию отопительных приборов могут выполнять трубопроводы системы).

    Наладка

    Наладка — это подготовка к использованию. Синонимы слова наладка: настройка, отлаживание, починка, регулировка, проверка, поправление. Антонимы: разборка, поломка, авария.

    Итак, система отопления заполнена и опрессована. Самое время приступить к регулировке, тепловым испытаниям и вводу её в эксплуатации. Перед регулировкой должны быть выполнены следующие работы:

    • смонтирована система отопления;
    • произведена проверка её соответствия проекту;
    • система промыта и заполнена водой;
    • произведена пусконаладка основного оборудования.

    В процессе пусконаладки предстоит сделать следующее:

    • включить основное оборудование;
    • внимательно прислушаться и присмотреться к происходящему вокруг — посторонние шумы, вибрации, наличие утечки воды, запах гари, яркие вспышки и многое другое должны насторожить.

    Может быть, пора бежать отсюда? Или необходимо открыть закрытый вентиль у насоса? А может, после нажатия кнопки «Вкл» ничего не изменилось, потому что забыли включить штекер в розетку или не открыли вентиль подачи газа на котёл?

    Ситуации бывают разные и, чтобы быть готовыми ко всему, прежде всего нужно понимать и представлять устройство системы отопления, наладку которой осуществляется.

    • внимательно проконтролировать показания всех имеющихся контрольноизмерительных приборов;
    • настроить и отрегулировать различные контуры системы отопления;
    • не забыть подписать приёмо-сдаточный акт.

    В общем случае процесс наладки можно разделить на несколько этапов, каждый из которых отвечает за настройку и регулировку определённой группы узлов системы:

    • наладка котельного агрегата или теплового пункта;
    • гидравлическая и тепловая регулировка системы отопления.

    Гидравлическая и тепловая регулировка системы отопления

    Регулировка систем осуществляется для обеспечения распределения проектных расходов теплоносителя по всем циркуляционным кольцам. Теплоотдачу СО можно регулировать двумя способами: качественно и количественно (рис. 2).

    Качественное регулирование — это изменение теплоотдачи за счёт изменения температуры теплоносителя t1 и t2 [°C] и, соответственно, температурного напора отопительного оборудования Δt [°C].

    Читайте также:  Как очистить воду в колодце — подробная инструкция + Видео

    Качественное регулирование осуществляется в котельной, индивидуальном тепловом пункте и смесительном узле. В котельной температура теплоносителя изменяется за счёт изменения количества сжигаемого топлива или смешивания теплоносителей; в ИТП при закрытой схеме — за счёт изменения расхода греющего теплоносителя; в ИТП при открытой схеме присоединения системы отопления и в узлах смешивания — смешиванием подающего и обратного теплоносителя.

    Количественное регулирование — это изменение теплоотдачи за счёт изменения расхода теплоносителя G [кг/ч].

    Количественное регулирование в первую очередь направлено на гидравлическую увязку системы, то есть настройку распределения потоков между циркуляционными кольцами.

    Настройка системы отопление заключается в обеспечении равномерности прогрева системы отопления и равномерности распределения теплоносителя. В практике наладки и эксплуатации систем отопления применяются оба способа одновременно.

    Итак, приступим к наладке небольшой двухтрубной системы отопления (рис. 3). Наша цель — обеспечить равномерное, требуемое распределение тепла.

    Без регулировки системы отопления в системе наступит равновесие (то есть Δр1 = Δр2 = Δр3 = рразрег) и расход теплоносителя распределится так, как ему будет удобней и основной объём воды пойдёт по пути наименьшего сопротивления. Последнее объясняется тем, что данный путь будет пролегать через отопительный прибор №1, то есть G1 > G2 (G > G1тр, G

    Настройка и регулировка элеватора и системы отопления здания

    Здравствуйте! В данной статье я рассмотрю типовой, скажем так, случай наладки и регулировки внутренней системы отопления здания. А именно, системы отопления с элеваторным узлом смешения. По моим наблюдениям, таких ИТП (тепловых пунктов) примерно процентов 80-85 от общего количества теплоузлов. Про элеватор я писал в этой статье .

    Наладка элеваторного узла производится после наладки оборудования ИТП. Что это значит? Это значит, что для нормальной работы элеватора у вас в тепловом пункте должны быть известны рабочие параметры от теплоснабжающей организации по давлению и температуре в подающем трубопроводе (подаче) P1 и T1. То есть, температура в подаче T1 должна соответствовать температуре по утвержденному на отопительный сезон температурному графику отпуска тепла. График такой можно и нужно взять в теплоснабжающей организации, это не тайна за семью печатями. И вообще такой график должен быть у каждого потребителя теплоэнергии в обязательном порядке. Это ключевой момент.

    Затем давление в подаче P1. Оно должно быть не меньше необходимого для нормальной работы элеватора. Ну обычно теплоснабжающая организация рабочее давление по подаче все таки выдерживает.

    Далее необходимо, чтобы регулятор давления, или регулятор расхода, или дроссельные шайба были правильно отрегулированы, настроены. Или как я обычно говорю, «выставлены». Об этом я как нибудь напишу отдельную статью. Будем считать, что все эти условия соблюдены, и можно приступать к наладке и регулировке элеваторного узла. Как это обычно делаю я?

    Первым делом я стараюсь посмотреть проектные данные по паспорту ИТП. Про паспорт ИТП я писал в этой статье . Здесь нас интересуют все параметры, что касаются элеватора. Сопротивление системы, перепад давлений и т.д.

    Во вторых, проверяю по возможности соответствие факта и рабочих данных из паспорта ИТП.

    В третьих, смотрю и проверяю поэлементно элеватор, грязевики, запорнуюи регулирующую арматуру, манометры, термометры.

    В четвертых, смотрю перепад давлений между подачей и обраткой (располагаемый напор) перед элеватором. Он должен соответствовать или быть близким к расчетному, просчитанному по формуле.

    В пятых, по манометрам после элеваторного узла, перед домовыми задвижками смотрю потери давления в системе (сопротивление системы). Они не должны превышать 1 м.вст. для зданий до 5 этажей, и 1,5 м.в.ст. для зданий от 5 до 9 этажей. Это в теории. Но и по факту, если у вас потери давления 2 м.в.ст. и выше, то скорее всего, возникнут проблемы. Если у вас шкала делений на манометрах после элеваторного узла в кгс/см2 (более частый случай), то смотреть показания нужно так, если на подаче показания манометра 4,2 кгс/см2, то на обратке должно быть 4,1 кгс/см2. Если же на обратке 4,0 или 3,9 кгс/см2, то это уже тревожный сигнал. Конечно, здесь нужно учитывать, что манометры могут давать погрешность измерений, всякое бывает.

    В шестых, проверяю, каков коэффициент смешения элеватора. Про коэффициент смешения я писал здесь . Коэффициент смешения должен соответствовать расчетному, или быть близким по значению к нему. Коэффициент смешения определяем по температурам теплоносителя, которые берем либо с мгновенных показаний теплосчетчика, либо с ртутных термометров. Причем здесь нужно учитывать, что чем больше перепад температур в системе отопления, тем точнее можно просчитать коэффициент смешения. Соответственно, чем меньше перепад температур в системе, тем более высока может быть погрешность в определении коэффициента смешения элеватора.

    Нечасто, но бывает так, что разность давлений между подачей и обраткой перед элеватором (располагаемый напор) является недостаточным для обеспечения необходимого коэффициента смешения. Это, я бы так сказал, тяжелый случай. Если теплоснабжающая организация не может (или не хочет) обеспечить вам необходимый перепад давлений, то скорее всего вам придется переходить на схему с циркуляционным насосом.

    Наладку элеватора можно считать удовлетворительной и законченной, если принятый размер сопла обеспечивает необходимый расход сетевой воды и коэффициент смешения элеватора.

    После наладки элеваторного узла приступают к наладке системы отопления здания. Сначала смотрят схему разводки системы отопления по зданию (если она есть, конечно). Если нет, я просматриваю разводку отопления по зданию визуально. Хотя визуальный осмотр необходим в любом случае. Здесь необходимо узнать, какая разводка , верхняя или нижняя, какие отопительные приборы установлены, есть ли на них регулирующая арматура, есть ли балансировочные краны на стояках отопления, терморегуляторы на отопительных приборах, есть ли устройства для удаления воздуха в верхних точках.

    Наладка системы отопления включает в себя проверку и регулировку системы как по горизонтали (распределение теплоносителя по стоякам), так и по вертикали (распределение теплоносителя по этажам).

    Сначала проверяем прогрев нижних точек всех стояков. Можно делать это на ощупь. Но в этом случае лучше, чтобы температура воды была 55-65 °С. При более высокой температуре трудно уловить степень прогрева. Нижние точки стояков отопления, как правило, находятся в подвале здания. Хорошо, если на всех стояках установлена хоть какая — то регулирующая арматура. Это вообще необходимо, но к сожалению, не всегда бывает по факту. Отлично, если на стояках установлены балансировочные клапаны. Тогда перегревающиеся стояки прикрываем регулирующей арматурой.

    Но лучше, конечно, проверку распределения воды по стоякам производить с помощью замеров температур в подаче и обратке. Хотя это более трудоемкий вариант.

    Так, например, температуру обратки T2 в двухтрубной системе следует принимать с учетом остывания температуры воды в подаче. Если по графику T1 = 68 °С, а фактическиT1 = 62 °С, T2 по графику равна 53 °С. В этом случае расчетная температура T2 = 62- (68-53) = 47 °С, а не 53 °С.

    Вообще, в результате регулировки по стоякам должна быть примерно одинаковая разность температур воды у входа и выхода ее из всех стояков.

    Далее производится регулировка по отдельным отопительным приборам. У меня на многих объектах установлены ручные прямые регулирующие краны.

    Очень хорошая штука для регулировки. Еще лучше, если у вас установлены на отопительных приборах терморегуляторы. Тогда регулировка производится в автоматическом режиме. Замеры температуры отопительных приборов проводим с помощью пирометра.

    Наладка элеваторного узла и системы отопления считается удовлетворительной, если достигнута равномерная температура отапливаемых помещений здания.

    На тему устройства и настройки тепловых пунктов я написал книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно. Вот содержание книги:

    1. Введение
    2. Устройство ИТП, схема без элеватора
    3. Устройство ИТП, элеваторная схема
    4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.
    5. Заключение

    Просмотреть книгу можно по ссылке ниже:

    Устройство ИТП (тепловых пунктов) зданий

    Наладка и регулировка систем теплопотребления

    В.С. Стрепетов, главный специалист-теплотехник, руководитель участка «Теплосеть-наладка», ООО «Арифметика Света», г. Москва

    Введение

    Долгое время занимаясь наладкой тепловых сетей и внутренних систем теплопотребления, постоянно разъезжая по всей стране, работая на производстве или жилых микрорайонах городов, постоянно встречаю одни и те же ошибки, связанные с непрофессионализмом службы эксплуатации и некоторых наладочных организаций. Хотел бы поделиться опытом, знаниями в области эксплуатации и наладки тепловых сетей и внутренних систем теплопотребления. Особенно это полезно будет молодым специалистам-теплотехникам, которые находятся в начале своего пути. Их впереди ждет интересная работа, которая потребует больших знаний и опыта.

    Советская профессиональная строительная школа проектирования по разным причинам была полностью разрушена, хотя и она редко, но допускала ошибки, исправление которых стоило немалых государственных средств. Специалисты- теплотехники, занимающиеся профессионально наладкой тепловых сетей, нередко поругивали их. Но то, что происходит сейчас в проектировании, особенно касательно теплоснабжения, не поддается никакой критике. Крупных институтов по строительному проектированию в России почти не осталось. Сейчас на рынке строительного проектирования существуют небольшие проектные мастерские (бюро), которые в штате имеют трех-четырех специалистов средней квалификации, например: проектировщика-электрика, проектировщика пожарных трубопроводов и других специалистов, но при этом есть разрешение на проектирование практически всех (кроме газа) инженерных санитарно-технических коммуникаций – холодного и горячего водопровода, канализации, отопительной системы зданий, внутренних систем теплопотребления с калориферами, отопительно-вентиляционными агрегатами, тепловых сетей, ЦТП и т.д. Руководство этих «бюро», не имея ни опыта, ни знаний, даже, порой, и представления, берется за проектирование всех вышеперечисленных работ.

    За последние годы пришлось изучить немало таких «проектов». По многим объектам уже были выполнены монтажные работы, они сданы. Долгое время после пуска в эксплуатацию данных объектов Заказчик и его служба эксплуатации была не в силах разобраться в низком качестве теплоснабжения и только после вмешательства профессионалов ситуация исправлялась, но Заказчику при этом приходилось многое переделывать, неся немалые финансовые затраты. Иногда на проектантов подавали в суд, но это долгая история.

    Настоятельно советую потенциальным Заказчикам подходить к выбору проектной организации очень осторожно, а после выполнения проекта найти профессионала-теплотехника, который сделает его экспертизу. Это спасет вас от хронических головных болей и немалых финансовых затрат в будущем.

    Элеваторные узлы

    Основные ошибки, повторяемые службой эксплуатации тепловых сетей и внутренних систем теплопотребления, и влияющие на качество теплоснабжения на элеваторных тепловых узлах:

    ■ не соответствующий тепловой нагрузке здания номер элеватора – он слишком мал или велик;

    ■ неправильная установка сопла элеватора (расцентровка);

    ■ сопло слишком короткое или слишком длинное. От этого в систему отопления поступает больше требуемого обратного теплоносителя, или наоборот меньше. Как результат – здание недогревается или перегревается;

    ■ сильный шум в элеваторе (возникает от чрезмерно большого перепада давления, до и после элеватора – более 20 м вод. ст.). Чтобы удалить лишний шум требуется до элеватора установить расчетную дроссельную шайбу, которая «срежет» 5-7 м лишнего напора, шум сразу прекратится;

    ■ элеватор не работает, что свидетельствует о недостаточном перепаде давления до и после элеватора.

    Не могу не заострить внимание еще на одном очень важном замечании, на которое служба эксплуатации и наладочные организации вообще не обращают внимание. На элеваторных и безэлеваторных тепловых узлах, как правило, жилых домов, имеются врезки на отопление фойе подъезда. Врезаны они после элеватора или дроссельной шайбы, но бывает и до элеватора и шайбы. Это вообще 100% перемычка. В фойе подъезда на 1-м этаже установлены, как правило, радиаторы из 12-15 секций или конвектор. Его тепловая нагрузка примерно составляет 1,5-2 тыс. ккал/ч, подводка Ду 15 или Ду 20, длина подводки

    3-4 м по одной трубе. Если исходить из того, что теплоноситель идет охотнее туда, где меньше гидравлическое сопротивление, то нетрудно догадаться, на сколько увеличится расход теплоносителя в этом приборе (имея при этом большую скорость), оставляя концевые стояки в системе отопления на голодном пайке. Случаев из практики множество. А если жилой дом 8-подъездный и имеет соответственно 8 тепловых узлов? Плюс экономика – тепловой счетчик фиксирует неэффективно используемый теплоноситель, и в то же время происходит небольшое повышение температуры обратного трубопровода.

    Читайте также:  Сифон для душевой кабины с низким поддоном: виды, выбор, сборка, монтаж

    Есть простые способы ликвидировать эти перемычки, и при этом отопительный прибор в фойе подъезда будет всегда работать эффективно. Нужно установить на подводке в сгоне дроссельную шайбу с диаметром отверстия 3 мм. По расчету дроссельная шайба на этот прибор должна быть: 1,1-1,3 мм, но во избежание частых засорений минимальный диаметр шайбы принят равным 3 мм. После установки шайбы вентилями отрегулировать температуру обратной воды (на ощупь), чтобы она была примерно такой, которая приходит с отопительных стояков. Во многоподъездном доме старой постройки установлен, как правило, один тепловой узел. Если отопление фойе подъездов не отрегулировано, то это отрицательно сказывается на теплоснабжении концевых стояков. Порекомендовал бы в таких домах провести внутреннюю регулировку стояков. Установить на первых трех стояках от теплового узла левого и правого крыла в сгонах дроссельные шайбы в 3 мм, после этого посмотреть прогрев концевых стояков, если этого недостаточно, то установить еще. В конце концов концевые стояки прогреются не хуже первых. Проверено на практике много раз. То же самое рекомендуем делать в цехах предприятий, где по правой и левой стороне цеха проходит дежурное отопление, состоящее в основном из регистров гладких труб. Количество регистров доходит от 10 до 15 шт. по каждой стороне. Соответственно концевые 3-5 регистров совсем холодные или чуть теплые. Только не верьте слесарям, которые будут вас уговаривать все это сделать вентилями – требуемого эффекта не добьетесь.

    Грязевики

    Одним из важных элементов системы теплоснабжения являются грязевики. На источнике, в котельной или ТЭЦ грязевики, как правило, установлены на обратной магистрали перед сетевыми насосами. На тепловых узлах их два: на подающей магистрали для защиты системы отопления и на обратной магистрали для защиты системы теплоснабжения. Грязевик прост в исполнении и эксплуатации, надежен, неприхотлив, десятилетиями служит верой и правдой, подчищая нашу бесхозяйственность и низкую техническую культуру. Принцип действия грязевиков основан на резком снижении скорости движения теплоносителя. В некоторых конструкциях грязевиков скорость снижается до 0,03 м/с, в результате чего посторонние частицы, случайно попавшие в трубопровод, и примеси, находившиеся в воде, оседают на дно грязевика. Чисткой, промывкой грязевиков служба эксплуатации, как правило, не занимается, за редким исключением. У грязевика большой запас прочности, его не так просто засорить.

    Но в последнее время наметилась нехорошая тенденция – грязевики стали потихоньку исчезать из ИТП, ЦТП и модульных котельных, а на их место пришли, так называемые, фильтры. По своим характеристикам они подходят для идеально чистого теплоносителя, примерно схожего с минеральной водой. За 43 года работы в наладке тепловых сетей такой теплоноситель ни разу не встретился. Плюс у фильтров большие гидравлические сопротивления, даже когда они чистые.

    Изучая проекты по тепловым сетям за последние 5-7 лет с удивлением для себя обнаружил, что грязевиков в проекте вообще нет, их полностью заменили фильтрами. Вспоминаю десятки случаев значительного засорения сеток фильтров в модульных котельных, что приводило к резкому ухудшению теплоснабжения зданий. Служба эксплуатации, как правило, не может определить причину. За последние годы был накоплен отрицательный опыт эксплуатации подобных фильтров. При засоре по замерам давления до и после фильтра потери напора составляют от 5 до 20 м вод. ст. По нашей рекомендации служба эксплуатации вскрывает фильтр, чистит сетку и устанавливает его на прежнее место. То же, но реже происходит в жилых, административных зданиях, цехах предприятий. Служба эксплуатации, намучившись за отопительный сезон с чисткой сеток фильтров, просто потихоньку их снимает, устанавливает без сетки и пускает теплоноситель напрямую в систему отопления, тепловую сеть, при этом грязевики отсутствуют.

    Считаю вытеснение грязевиков из наших тепловых систем большой ошибкой, которая нам уже аукается. Странно, почему никто об этом не говорит, не бьет тревогу? Обращаюсь к коллегам: требуйте от проектировщиков предусмотреть обязательный монтаж грязевиков! Устанавливать грязевики и фильтры одновременно не рекомендуется, возникают большие местные сопротивления.

    Манометры и термометры

    Ошибкой, но меньшего значения, является установка манометров на грязевиках. Теплоноситель, под давлением входя в грязевик, от резкого расширения частично теряет свой напор, а выходя из него – восстанавливает. Данные, которые показывает манометр, установленный на грязевике, не точны. Практически на каждом крупном объекте, выполняя пусконаладочные работы, встречаю 3-5 таких случаев. Снимайте их.

    Для получения точных замеров давления на тепловом узле требуется, чтобы манометры были выставлены на одном уровне. Манометры, установленные на обратном трубопроводе (не выставленные), показывают, как правило, на 1 м вод. ст. меньше. Некоторые слесари и мастера даже считают это перепадом.

    Термометр будет показывать точную температуру теплоносителя, только если гильза для него врезана на 50% диаметра трубопровода, прочищена и залита машинным маслом.

    Узлы учета тепловой энергии

    Хотелось бы обратить внимание уважаемых коллег на тепловые счетчики. Они появились сравнительно недавно, а в массовом порядке их стали устанавливать лет 15 назад. После окончания массовой установки счетчиков, стало ясно, что в тепловой сети появился новый дроссель, который надо обязательно учитывать. Заводы-изготовители в технических характеристиках предоставляют данные о гидравлических сопротивлениях прибора, но на практике они не всегда сходятся. Самое главное, на что надо обратить внимание, – это на диаметр труб на подводках к счетчику. На практике часто случается, когда установка тепловых счетчиков в модульных котельных на теплоснабжение или на ГВС приводила к резкому ухудшению циркуляции на концевых зданиях. И служба эксплуатации, в горячке, не разобравшись в чем дело, шла на радикальные меры – замену сетевых и циркуляционных насосов на более мощные.

    Гидравлические расчеты тепловых счетчиков с подводками в котельных нередко показывают, что на этом маленьком участке, где установлен счетчик общей длиной

    8 м (по двум трубам), потери напоров составляют от 5 до 18 м вод. ст. Это происходит в результате двух ошибок. Первая ошибка – сильно занижены диаметры подводов к счетчикам, были установлены на глазок дилетантами без всяких расчетов. В таких случаях часто после гидравлического расчета нужно увеличить подводки на два диаметра с Ду 32 на Ду 50, с Ду 40 на Ду 76. То же самое может быть на тепловых узлах зданий, особенно там, где напоры критические и лишний дроссель в 2-3 м вод. ст. может нарушить циркуляцию теплоснабжения абонента. Вторая ошибка заключается в отсутствии учета постепенного роста тепловой нагрузки в котельной в течение 3-4 лет приблизительно на 25-30%. При старой тепловой нагрузке потери напора на счетчиках близки к норме, но при увеличении нагрузки потери резко возрастают. Необходимо это знать и учитывать.

    Внутренние системы теплопотребления промышленных объектов

    Тепловая нагрузка крупных промышленных объектов включает отопительно-вентиляционную составляющую, доля которой в общем объеме теплопотребления предприятия значительна.

    Система теплоснабжения таких объектов часто разрегулирована, ее работа осуществляется в неэкономичном гидравлическом и тепловом режимах.

    Часто встречается ситуация, когда гидравлический расчет ветвей внутренних трубопроводов цеха с отопительно-вентиляционными агрегатами не делается и потери в трубопроводах в расчете дроссельных шайб не учитываются. На эти подводные камни всегда наталкиваются служба эксплуатации и так называемые «наладчики». Они устанавливают одну общую дроссельную шайбу на всю ветвь, что делать категорически нельзя. Своя расчетная дроссельная шайба должна быть установлена перед каждым агрегатом, т.к. на каждом расчетном участке разные гидравлические сопротивления в трубопроводах, расходы теплоносителя, сопротивления установок и т.д. При установке одной дроссельной шайбы на ветви с отопительно-вентиляционным агрегатом страдают больше всего установки с большим расходом теплоносителя и установки, удаленные от ввода (гребенки). Бывают вообще комичные случаи, когда на весь цех на гребенке устанавливают одну общую дроссельную шайбу, внося полный каламбур в теплоснабжение цеха.

    Еще важный момент: нельзя к трубопроводам отопительно-вентиляционных систем подсоединять приборы отопления, т.к. сопротивления у них очень маленькие, и, даже если установить на каждый прибор шайбу Ду 3, они все равно будут работать как перемычки, этим «подсаживая» отопительно-вентиляционные установки. Например, гидравлическое сопротивление регистра из гладких труб будет

    0,05 м вод. ст., а калориферной установки от 0,5 до 2,5 м вод. ст. Вопрос: «куда прежде всего пойдет теплоноситель?»

    При эксплуатации приточных, отопительно-вентиляционных систем в дневное время, особенно ночью, установки работают в режиме рециркуляции, т.е. с выключенными вентиляторами, теплосъема нет, температура обратной воды аналогична подающей. В тепловой источник (котельную, ТЭЦ) по обратному трубопроводу приходит теплоноситель с сильно завышенной температурой. На сетевые насосы нельзя подавать теплоноситель более 80 О С. Хорошо, если у предприятия своя котельная. ТЭЦ же нещадно штрафует потребителей тепловой энергии за превышение температуры в обратном трубопроводе.

    Влияние приточных отопительно-вентиляционных систем на температуру обратного трубопровода на предприятиях огромно, т.к. их тепловая нагрузка основная. Предлагается два сравнительно простых и дешевых варианта для борьбы с этим явлением. Первый – это монтаж на всех установках без исключения т.н. «отсекате- лей». Это простой прибор, который при выключенном вентиляторе существенно сокращает расход теплоносителя через установку до минимума, а при включении вентилятора требуемый расход теплоносителя моментально восстанавливается. Приборы отечественные, на рынке более 15 лет, недорогие, хорошо себя зарекомендовали, надежны, просты в монтаже и эксплуатации. Зарубежные аналоги стоят в 10-20 раз дороже. Окупают себя иногда за сутки, все зависит от тепловой нагрузки здания. Про их существование мало кто знает, нет рекламы, обмена опытом и т.д. Как правило, после их 100% установки изменение в расходах теплоносителя на предприятии происходят кардинальные.

    Второй вариант считается беззатратным, хотя и требует небольших переврезок на гребенке и ежедневного внимания службы эксплуатации. Применяется с советских времен, когда «отсекателей» еще не было. Особенно он приемлем для предприятий российской глубинки, где на поддержание теплоснабжения отпускается недостаточно средств или вообще не отпускается. Принципиальная схема приведена на рисунке.

    Принцип очень простой: теплоноситель, заходя в цех на гребенку, сразу весь поступает на ветви с калориферами и отопительно-вентиляционными агрегатами, при этом ветви на теплоснабжение отопительно-вентиляционных систем цеха и отопления на подающем трубопроводе разделены между собой задвижкой, которая закрыта. Возвращаясь от приточных систем, теплоноситель «уходит» не в обратную магистраль тепловой сети (поскольку задвижка на обратном трубопроводе от притоков закрыта), а в подачу ветвей отопления цеха через перемычку; пройдя системы отопления, теплоноситель возвращается уже в обратную магистраль тепловой сети. Если надо вернуть систему к обычной схеме, это очень легко делается. Расход теплоносителя существенно сокращается. Для экономичного теплоснабжения цеха в ночное время (когда нет третьей смены) перспективная схема. Утром эксплуатационный персонал за несколько минут возвращает теплоснабжение по обычной схеме, если это требуется. Схема внедрялась много раз, хорошо себя зарекомендовала, единственное – надо следить за переключениями. Может быть не обязательно ее применять во всех цехах, тут надо смотреть по месту. Эффективнее всего использовать данную схему на ближних к котельной цехах.

    О профессиональной литературе

    Высокопрофессиональная, качественная техническая литература по теплоснабжению для инженерно-технических работников, эксплуатационных и пусконаладочных предприятий, выпущенная более 30 лет назад и незаслуженно забытая, очень актуальна и востребована в наше время и нисколько не устарела. В 1972 г. была выпущена небольшая брошюра в мягком переплете под названием «Расчет и проектирование воздухонагревательных установок для систем приточной вентиляции», Л.Ф. Краснощекова, где очень подробно, с примерами показаны все теплотехнические расчеты по калориферным установкам, их компоновка, подсоединение и т.д. Можно с уверенностью сказать – ничего подобного по этой тематике за последние 44 года опубликовано не было. Сейчас эта брошюра забыта, а жаль. Нынешние молодые специалисты в области теплотехники очень многое могли бы почерпнуть из нее. Хочу предложить также молодым коллегам еще 4 издания, которые станут хорошими помощниками. Это: М.М. Апарцев «Наладка водяных систем централизованного теплоснабжения»; И.М. Сорокин с соавторами «Наладка систем централизованного теплоснабжения»; В.В. Белоусов «Пуск и наладка централизованных систем отопления»; Б.М. Мадорский, В.А. Шмидт «Эксплуатация центральных тепловых пунктов, систем топления и горячего водоснабжения».

    Ссылка на основную публикацию