Схемы отопления частного дома своими руками: расчет системы водяного отопления

Расчет системы отопления частного дома: правила и примеры расчёта

Отопление частного дома – необходимый элемент комфортабельного жилья. Согласитесь, что к обустройству отопительного комплекса следует подходить внимательно, т.к. ошибки обойдутся недешево. Но вы никогда не занимались подобными вычислениями и не знаете как правильно их выполнять?

Мы поможем вам – в нашей статье подробно рассмотрим, как делается расчет системы отопления частного дома для эффективного восполнения потерь тепла в зимние месяцы.

Приведем конкретные примеры, дополнив материал статьи наглядными фото и полезными видеосоветами, а также актуальными таблицами с показателями и коэффициентами, необходимыми для вычислений.

Теплопотери частного дома

Здание теряет тепло из-за разности температур воздуха внутри и вне дома. Теплопотери тем выше, чем более значительна площадь ограждающих конструкций здания (окон, кровли, стен, фундамента).

Также потери тепловой энергии связаны с материалами ограждающих конструкций и их размерами. К примеру, теплопотери тонких стен больше, чем толстых.

Эффективный расчет отопления для частного дома обязательно учитывает материалы, использованные при постройке ограждающих конструкций.

Например, при равной толщине стены из дерева и кирпича проводят тепло с разной интенсивностью – теплопотери через деревянные конструкции идут медленнее. Одни материалы пропускают тепло лучше (металл, кирпич, бетон), другие хуже (дерево, минвата, пенополистирол).

Атмосфера внутри жилой постройки косвенно связана с внешней воздушной средой. Стены, проемы окон и дверей, крыша и фундамент зимой передают тепло из дома наружу, поставляя взамен холод. На них приходится 70-90% от общих теплопотерь коттеджа.

Постоянная утечка тепловой энергии за отопительный сезон происходит также через вентиляцию и канализацию.

При расчете теплопотерь постройки ИЖС эти данные обычно не учитывают. Но включение в общий тепловой расчет дома потерь тепла через канализационную и вентиляционную системы – решение все же правильное.

Выполнить расчёт автономного контура отопления загородного дома без оценки теплопотерь его ограждающих конструкций невозможно. Точнее, не получится определить мощность отопительного котла, достаточную для обогрева коттеджа в самые лютые заморозки.

Анализ реального расхода тепловой энергии через стены позволит сравнить затраты на котловое оборудование и топливо с расходами на теплоизоляцию ограждающих конструкций.

Ведь чем более энергоэффективен дом, т.е. чем меньше тепловой энергии он теряет в зимние месяцы, тем меньше расходы на приобретение топлива.

Для грамотного расчета системы отопления потребуется коэффициент теплопроводности распространенных строительных материалов.

Расчет потерь тепла через стены

На примере условного двухэтажного коттеджа рассчитаем теплопотери через его стеновые конструкции.

  • квадратная «коробка» с фасадными стенами шириной 12 м и высотой 7 м;
  • в стенах 16 проемов, площадь каждого 2,5 м 2 ;
  • материал фасадных стен – полнотелый кирпич керамический;
  • толщина стены – 2 кирпича.

Далее проведем вычисление группы показателей, из которых и складывается общее значение потерь тепла через стены.

Показатель сопротивления теплопередачи

Чтобы выяснить показатель сопротивления теплопередачи для фасадной стены, нужно разделить толщину стенового материала на его коэффициент теплопроводности.

Для ряда конструкционных материалов данные по коэффициенту теплопроводности представлены на изображениях выше и ниже.

Наша условная стена выстроена из керамического полнотелого кирпича, коэффициент теплопроводности которого – 0,56 Вт/м· о С. Ее толщина с учетом кладки на ЦПР – 0,51 м. Разделив толщину стены на коэффициент теплопроводности кирпича, получаем сопротивление теплопередаче стены:

0,51 : 0,56 = 0,91 Вт/м 2×о С

Результат деления округляем до двух знаков после запятой, в более точных данных по сопротивлению теплопередачи потребности нет.

Площадь внешних стен

Поскольку примером выбрано квадратное здание, площадь его стен определяется умножением ширины на высоту одной стены, затем на число внешних стен:

12 · 7 · 4 = 336 м 2

Итак, нам известна площадь фасадных стен. Но как же проемы окон и дверей, занимающие вместе 40 м2 (2,5·16=40 м 2 ) фасадной стены, нужно ли их учитывать?

Действительно, как же корректно рассчитать автономное отопление в деревянном доме без учета сопротивления теплопередачи оконных и дверных конструкций.

Если необходимо обсчитать теплопотери здания крупной площади или теплого дома (энергоэффективного) – да, учет коэффициентов теплопередачи оконных рам и входных дверей при расчете будет правильным.

Однако для малоэтажных построек ИЖС, возводимых из традиционных материалов, дверными и оконными проемами допустимо пренебречь. Т.е. не отнимать их площадь из общей площади фасадных стен.

Общие теплопотери стен

Выясняем потери тепла стены с ее одного квадратного метра при разнице температуры воздуха внутри и снаружи дома в один градус.

Для этого делим единицу на сопротивление теплопередачи стены, вычисленное ранее:

1 : 0,91 = 1,09 Вт/м 2 · о С

Зная теплопотери с квадратного метра периметра внешних стен, можно определить потери тепла при определенных уличных температурах.

К примеру, если в помещениях коттеджа температура +20 о С, а на улице -17 о С, разница температур составит 20+17=37 о С. В такой ситуации общие теплопотери стен нашего условного дома будут:

0,91 · 336 · 37 = 11313 Вт,

Где: 0,91 – сопротивление теплопередачи квадратного метра стены; 336 – площадь фасадных стен; 37 – разница температур комнатной и уличной атмосферы.

Пересчитаем полученную величину теплопотерь в киловатт-часы, они удобнее для восприятия и последующих расчетов мощности отопительной системы.

Теплопотери стен в киловатт-часах

Вначале выясним, столько тепловой энергии уйдет через стены за один час при разнице температур в 37 о С.

Напоминаем, что расчет ведется для дома с конструкционными характеристиками, условно выбранными для демонстрационно-показательных вычислений:

11313 · 1 : 1000 = 11,313 кВт·ч,

Где: 11313 – величина теплопотерь, полученная ранее; 1 – час; 1000 – количество ватт в киловатте.

Для вычисления потерь тепла за сутки полученное значение теплопотерь за час умножаем на 24 часа:

11,313 · 24 = 271,512 кВт·ч

Для наглядности выясним потери тепловой энергии за полный отопительный сезон:

7 · 30 · 271,512 = 57017,52 кВт·ч,

Где: 7 – число месяцев в отопительном сезоне; 30 – количество дней в месяце; 271,512 – суточные теплопотери стен.

Итак, расчетные теплопотери дома с выбранными выше характеристиками ограждающих конструкций составят 57017,52 кВт·ч за семь месяцев отопительного сезона.

Учет влияния вентиляции частного дома

Расчет вентиляционных потерь тепла в отопительный сезон в качестве примера проведем для условного коттеджа квадратной формы, со стеной 12-ти метровой ширины и 7-ми метровой высоты.

Без учета мебели и внутренних стен внутренний объем атмосферы в этом здании составит:

12 · 12 · 7 = 1008 м 3

При температуре воздуха +20 о С (норма в сезон отопления) его плотность равна 1,2047 кг/м 3 , а удельная теплоемкость 1,005 кДж/(кг· о С).

Вычислим массу атмосферы в доме:

1008 · 1,2047 = 1214,34 кг,

Где: 1008 – объем домашней атмосферы; 1,2047 – плотность воздуха при t +20 о С .

Предположим пятикратную смену воздушного объема в помещениях дома. Отметим, что точная потребность в приточном объеме свежего воздуха зависит от числа жильцов коттеджа.

При средней разнице температур между домом и улицей в отопительный сезон, равной 27 о С (20 о С домашняя, -7 о С внешняя атмосфера) за сутки на обогрев приточного холодного воздуха понадобиться тепловой энергии:

5 · 27 · 1214,34 · 1,005 = 164755,58 кДж,

Где: 5 – число смен воздуха в помещениях; 27 – разница температур комнатной и уличной атмосферы; 1214,34 – плотность воздуха при t +20 о С; 1,005 – удельная теплоемкость воздуха.

Переведем килоджоули в киловатт-часы, поделив значение на количество килоджоулей в одном киловатт-часе (3600):

164755,58 : 3600 = 45,76 кВт·ч

Выяснив затраты тепловой энергии на обогрев воздуха в доме при пятикратной его замене через приточную вентиляцию, можно рассчитать «воздушные» теплопотери за семимесячный отопительный сезон:

7 · 30 · 45,76 = 9609,6 кВт·ч,

Где: 7 – число «отапливаемых» месяцев; 30 – среднее число дней в месяце; 45,76 – суточные затраты тепловой энергии на нагрев приточного воздуха.

Вентиляционные (инфильтрационные) энергозатраты неизбежны, поскольку обновление воздуха в помещениях коттеджа жизненно необходимо.

Потребности нагрева сменяемой воздушной атмосферы в доме требуется вычислять, суммировать с теплопотерями через ограждающие конструкции и учитывать при выборе отопительного котла. Есть еще один вид тепловых энергозатрат, последний – канализационные теплопотери.

Затраты энергии на подготовку ГВС

Если в теплые месяцы из крана в коттедж поступает холодная вода, то в отопительный сезон она – ледяная, с температурой не выше +5 о С. Купание, мытье посуды и стирка невозможны без нагрева воды.

Набираемая в бачок унитаза вода контактирует через стенки с домашней атмосферой, забирая немного тепла. Что происходит с водой, нагретой путем сжигания не бесплатного топлива и потраченной на бытовые нужды? Ее сливают в канализацию.

Рассмотрим на примере. Семья из трех человек, предположим, расходует 17 м 3 воды ежемесячно. 1000 кг/м 3 – плотность воды, а 4,183 кДж/кг· о С – ее удельная теплоемкость.

Средняя температура нагрева воды, предназначенной для бытовых нужд, пусть будет +40 о С. Соответственно, разница средней температуры между поступающей в дом холодной водой (+5 о С) и нагретой в бойлере (+30 о С) получается 25 о С.

Для расчета канализационных теплопотерь считаем:

17 · 1000 · 25 · 4,183 = 1777775 кДж,

Где: 17 – месячный объем расхода воды; 1000 – плотность воды; 25 – разница температур холодной и нагретой воды; 4,183 – удельная теплоемкость воды;

Для пересчета килоджоулей в более понятные киловатт-часы:

1777775 : 3600 = 493,82 кВт·ч

Таким образом, за семимесячный период отопительного сезона в канализацию уходит тепловая энергия в объеме:

493,82 · 7 = 3456,74 кВт·ч

Расход тепловой энергии на нагрев воды для гигиенических нужд невелик, в сравнении с теплопотерями через стены и вентиляцию. Но это ведь тоже энергозатраты, нагружающие отопительный котел или бойлер и вызывающие расход топлива.

Расчет мощности отопительного котла

Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.

Вычислив суточные потери тепла и расход теплой воды «на канализацию», можно точно определить необходимую мощность котла для коттеджа определенной площади и характеристик ограждающих конструкций.

Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.

Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:

271,512 + 45,76 = 317,272 кВт·ч,

Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.

Соответственно, необходимая отопительная мощность котла будет:

317,272 : 24 (часа) = 13,22 кВт

Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.

Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.

Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:

13,22 · 0,2 + 13,22 = 15,86 кВт

Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:

493,82 : 30 : 24 = 0,68 кВт

По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.

Выбор радиаторов отопления

Традиционно мощность отопительного радиатора рекомендовано выбирать по площади отапливаемой комнаты, причем с 15-20% завышением мощностных потребностей на всякий случай.

На примере рассмотрим, насколько корректна методика выбора радиатора «10 м2 площади – 1,2 кВт».

Исходные данные: угловая комната на первом уровне двухэтажного дома ИЖС; внешняя стена из двухрядной кладки керамического кирпича; ширина комнаты 3 м, длина 4 м, высота потолка 3 м.

По упрощенной схеме выбора предлагается рассчитать площадь помещения, считаем:

3 (ширина) · 4 (длина) = 12 м 2

Т.е. необходимая мощность радиатора отопления с 20% надбавкой получается 14,4 кВт. А теперь посчитаем мощностные параметры отопительного радиатора на основании теплопотерь комнаты.

Фактически площадь комнаты влияет на потери тепловой энергии меньше, чем площадь ее стен, выходящих одной стороной наружу здания (фасадных).

Поэтому считать будем именно площадь «уличных» стен, имеющихся в комнате:

3 (ширина) · 3 (высота) + 4 (длина) · 3 (высота) = 21 м 2

Зная площадь стен, передающих тепло «на улицу», рассчитаем теплопотери при разнице комнатной и уличной температуры в 30 о (в доме +18 о С, снаружи -12 о С), причем сразу в киловатт-часах:

0,91 · 21 · 30 : 1000 = 0,57 кВт,

Где: 0,91 – сопротивление теплопередачи м2 комнатных стен, выходящих «на улицу»; 21 – площадь «уличных» стен; 30 – разница температур внутри и снаружи дома; 1000 – число ватт в киловатте.

Выходит, что для компенсации потерь тепла через фасадные стены данной конструкции, при 30 о разнице температур в доме и на улице достаточно отопления мощностью 0,57 кВт·ч. Увеличим необходимую мощность на 20, даже на 30% – получаем 0,74 кВт·ч.

Таким образом, реальные мощностные потребности отопления могут быть значительно ниже, чем торговая схема «1,2 кВт на квадратный метр площади помещения».

Причем корректное вычисление необходимых мощностей отопительных радиаторов позволит сократить объем теплоносителя в системе отопления, что уменьшит нагрузку на котел и расходы на топливо.

Выводы и полезное видео по теме

Куда уходит тепло из дома – ответы предоставляет наглядный видеоролик:

В видеоролике рассмотрен порядок расчета теплопотерь дома через ограждающие конструкции. Зная потери тепла, получится точно рассчитать мощности отопительной системы:

Читайте также:  Камины кассетные – разновидности и типы, выполнение монтажа и установки

Подробное видео о принципах подбора мощностных характеристик котла отопления смотрите ниже:

Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.

С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.

Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.

Вы самостоятельно рассчитывали систему отопления для своего дома? Или заметили несоответствие вычислений, приведенных в статье? Поделитесь своим практическим опытом или объемом теоретических знаний, оставив комментарий в блоке под этой статьей.

Самостоятельный расчёт индивидуальной системы отопления

Из всех известных на данный момент вариантов для обогрева собственного дома наиболее распространённым видом является индивидуальная система водяного отопления. Масляные радиаторы, камины, печи, тепловентиляторы и обогреватели инфракрасного излучения зачастую используют как вспомогательные приборы.

Система отопления частного дома состоит из отопительных приборов, трубопровода и запорно-регулирующих механизмов, всё это служит для транспортировки тепла от теплогенератора к конечным точкам отопления помещений. Важно понимать, что надёжность, долговечность и эффективность индивидуальной системы отопления зависит от её правильного расчёта и монтажа, а также от качества используемых материалов в данной системе и её грамотной эксплуатации.

Расчёт системы отопления

Рассмотрим подробно упрощённый вариант расчёта системы водяного отопления, в котором мы будем использовать стандартные и общедоступные комплектующие. На рисунке схематически представлена индивидуальная система отопления частного дома на основе одноконтурного котла. Прежде всего, нам необходимо определиться с его мощностью, так как он является основой всех вычислений в дальнейшем. Выполним данную процедуру по описанной ниже схеме.

Общая площадь помещения: S = 78,5; общий объём: V = 220

У нас имеется одноэтажный дом с тремя комнатами, прихожей, коридором, кухней, ванной и туалетом. Зная площадь каждого отдельного помещения и высоту комнат, необходимо произвести элементарные расчёты для того, чтобы вычислить объём всего дома:

Таким образом, мы посчитали объём всех отдельных помещений, благодаря чему теперь можно вычислить общий объём дома, он равен 220 кубическим метрам. Заметьте, мы также посчитали объём коридора, но на самом деле там не указано ни одного отопительного прибора, для чего это нужно? Дело в том, что коридор также будет отапливаться, но пассивным образом, за счёт циркуляции тепла, поэтому нам необходимо внести его в общий список отопления, для того, чтобы расчёт был правильным и дал нужный результат.

Следующий этап расчёта мощности котла мы будем проводить, исходя из необходимого количества энергии на один кубический метр. Для каждого региона существует свой показатель — в наших вычислениях используем 40 Вт на кубический метр, исходя из рекомендаций для регионов европейской части СНГ:

Полученную цифру необходимо возвести в коэффициент 1,2, что даст нам 20% запаса мощности для того, чтобы котёл постоянно не работал на полную мощность. Таким образом, мы понимаем, что нам необходим котёл, который способен вырабатывать 10,6 кВт (стандартные одноконтурные котлы выпускаются мощностью 12–14 кВт).

Расчёт радиаторов

В нашем случае мы будем использовать стандартные алюминиевые радиаторы высотой 0,6 м. Мощность каждого ребра такого радиатора при температуре 70 °С составляет 150 Вт. Далее мы посчитаем мощность каждого радиатора и количество условных рёбер:

  • комната 1: Округляем до 1500 и получаем 10 условных рёбер, но поскольку у нас два радиатора, оба под окнами, мы возьмём один с 6-ю рёбрами, второй с 4-мя.
  • комната 2: Округляем до 1500 и получаем один радиатор с 10-ю рёбрами.
  • комната 3: Округляем до 2700 и получаем три радиатора: 1-й и 2-й по 5 рёбер, 3-й (боковой) — 8 рёбер.
  • прихожая: Округляем до 1200 и получаем два радиатора по 4 ребра.
  • ванная: . Тут температура должна быть немного выше, получается 1 радиатор с 4-мя рёбрами.
  • туалет: Округляем до 450 и получаем три ребра.
  • кухня: Округляем до 2100 и получаем два радиатора по 7 рёбер.

В конечном результате мы видим, что нам необходимо 12 радиаторов общей мощностью:

Исходя из последних расчётов, видно, что наша индивидуальная система отопления без проблем справится с возложенной на неё нагрузкой.

Выбор труб

Трубопровод для системы индивидуального отопления является средой для транспортировки тепловой энергии (в частности, нагретой воды). На отечественном рынке трубы для монтажа систем представлены в трёх основных видах:

Металлические трубы имеют ряд значительных недостатков. Кроме того, что они обладают большим весом и требуют специального оборудования для монтажа, а также наличие опыта, они ещё подвержены коррозии и могут накапливать статическое электричество. Хороший вариант — медные трубы, они способны выдерживать температуру до 200 градусов и давление около 200 атмосфер. Но медные трубы отличаются спецификой в монтаже (требуется специальное оборудование, серебряный припой и большой опыт работы), кроме того их стоимость очень велика. Самым популярным вариантом считаются пластиковые трубы. И вот почему:

  • они имеют алюминиевую основу, которая с двух сторон покрыта пластмассой, благодаря чему они обладают огромной прочностью;
  • они абсолютно не пропускают кислород, что позволяет свести к нулю процесс образования коррозии на внутренних стенках;
  • благодаря алюминиевому армированию у них очень низкий коэффициент линейного расширения;
  • пластиковые трубы антистатичны;
  • обладают малым гидравлическим сопротивлением;
  • не требуется специальных навыков для монтажа.

Монтаж системы

Первым делом нам требуется установить секционные радиаторы. Их надо размещать строго под окнами, тёплый воздух от радиатора будет препятствовать проникновению холодного воздуха из окна. Для монтажа секционных радиаторов не понадобится никакого специального оборудования, лишь перфоратор и строительный уровень. Необходимо строго придерживаться одного правила: все радиаторы в доме должны быть смонтированы строго на одном горизонтальном уровне, от этого параметра зависит общая циркуляция воды в системе. Также соблюдайте вертикальное расположение рёбер радиатора.

После монтажа радиаторов можно приступать к прокладке труб. Необходимо заранее промерить общую длину труб, а также посчитать количество всевозможных фитингов (колен, тройников, заглушек и пр.). Для монтажа пластиковых труб понадобится всего три инструмента — рулетка, ножницы для труб и паяльник. На большинстве таких труб и фитингов есть лазерная перфорация в виде насечек и направляющих линий, что даёт возможность по месту выполнять монтаж правильно и ровно. Работая с паяльником, следует придерживаться только одного правила — после того как вы расплавили и состыковали концы изделий, ни в коем случае не прокручивайте их, если с первого раза не получилось припаять ровно, иначе возможна течь в этом месте. Лучше заранее потренируйтесь на кусочках, которые пойдут в отходы.

Дополнительные приборы

По статистике система с пассивной циркуляцией воды будет исправно функционировать, если площадь помещения не превышает 100–120 м 2 . В противном случае необходимо использовать специальные насосы. Конечно, существует ряд котлов, в которые уже встроены насосные системы и они сами обеспечивают циркуляцию воды по трубам, если у вас не такой, то следует приобрести его отдельно.

На отечественном рынке их выбор очень велик, к тому же они отвечают всем необходимым требованиям — потребляют мало электроэнергии, бесшумны и малогабаритны. Монтируют циркуляционные насосы на концах веток отопления. Таким образом, насос прослужит дольше, так как он не будет находиться под прямым воздействием горячей воды.

Пример однотрубной системы отопления с принудительной циркуляцией: 1 — котёл; 2 — группа безопасности; 3 — радиаторы отопления; 4 — игольчатый кран; 5 — расширительный бак; 6 — слив; 7 — водопровод; 8 — фильтр грубой очистки воды; 9 — циркуляционный насос; 10 — шаровые краны

Из всего вышеперечисленного становится ясно, что с монтажом подобной системы без труда справятся два или три человека, для этого не требуется обладать специальными профессиональными навыками, главное, уметь пользоваться элементарными строительными инструментами. В нашей статье мы рассмотрели систему индивидуального отопления, собранную с помощью стандартных комплектующих, их цена и общедоступность позволят почти каждому у себя дома смонтировать аналогичную систему отопления.

Схемы отопления частного дома

Схема отопления выбирается на стадии проектирования системы обогрева строения. От того каким способом будет обогреваться помещение зависит подбор основных компонентов отопительной системы: трубопроводов, источника тепла и нагревательных приборов.

Виды отопления

На выбор лучшей системы отопления влияют многие факторы: тип помещения, функциональность, мощность оборудования. Чтобы правильно подобрать необходимый вариант отопления, надо лучше узнать о его разновидностях, особенностях монтажных работ и функционировании приборов нагревания. Важными показателями являются также: цена и доступность топлива.

Чаще всего для частного дома используются следующие типовые схемы отопления: с естественной и принудительной циркуляцией теплоносителей, с двухтрубной и однотрубной разводкой. В качестве энергоносителя могут использоваться: дрова, уголь, газ, электричество и др.

Типы циркуляции

В зависимости от способа циркуляции можно выделить два типа:

Схема с естественной циркуляцией основана на изменении плотности теплоносителя. Система проста в исполнении и не зависит от коммуникаций. Она подойдет для небольшого частного строения.

Принудительная циркуляция производится за счет различия в давлениях между обратным и прямым ходом. Такое отопление практически не имеет ограничений по своему использованию, но требует дополнительных расходов на специальный насос и электроэнергию.

Данные виды систем имеют отличительные особенности в зависимости от способа подключении водяного отопления к источнику тепла: последовательно либо параллельно.

Тип здания

Если дом с одним этажом и высокой крышей, то для отопления лучше всего подойдет схема отопления с вертикальным способом подачи. В данном случае помещение можно будет сделать отапливаемым вместе с мансардной частью.

Если в частном доме есть глубокий подвал, то рекомендуется использовать горизонтальную разводку с котлом в подвальной части. Если дом имеет два и более этажа, то способ разводки будет двухтрубным с вертикальными стояками.

Теплоноситель и устройства нагрева

По виду теплоносителя различают следующие системы обогрева:

Нагревательные приборы можно выбрать трех видов:

Воздушное отопление

При воздушном отоплении воздух прогревается от источника тепла, минуя теплоносители. Используется для обогрева домов малой площади до 100 м². Такое отопление можно устанавливать как при ремонтных работах в уже существующем здании, так в новом здании.

Основные особенности

Как источник тепла используется газовая горелка или котел. Исключительной особенностью данной системы является то, что она кроме отопительной функции выполняет также и вентиляционную. Регулировка вентиляции и температуры осуществляется при помощи специальных термостатов.

Установка воздушной системы в частном доме обойдется дорого. Но сэкономить можно на топливе, расчет потребности которого показывает, что его понадобится значительно меньше из-за отсутствия необходимости прогревать теплоноситель. Такая система не замерзает и оперативно отреагирует на температурные колебания. Благодаря специальным фильтрам воздух остается всегда очищенным и свежим.

Недостатком можно считать пересушивание воздуха, но это можно с легкостью преодолеть с помощью увлажнителя.

Водяное

Водяное отопление – это замкнутая система, применяется как в квартире, так и в частном доме. В роли теплоносителя используется вода или антифриз. Вода перемещается от источника излучения тепла к радиаторам. Температура может регулироваться термостатом автоматически или кранами вручную.

Данный вид отопления очень популярен из-за доступности теплоносителя, его можно установить самостоятельно. Это относительно недорогой вид обогрева помещения.

Недостатком является промерзание системы в случае длительного отключения. Также существуют особые требования к теплоносителю. Вода должна быть без примесей и с минимальным количеством солей. Для нагревания теплоносителя используются разные котлы: на жидком и твердом топливе, электричестве или газе.

Электрическое

Электрическое отопление – это надежный и самый простой в использовании тип отопления. Особенно такой способ рекомендуется для дома размером не более 100 м². Если дом большей площади, то такое отопление становится экономически невыгодным.

Данная схема обогрева может применяться как дополнительная на случай ремонта или отключения основной системы. Это может быть отличным вариантом для прогревания частных домов, которые используются периодически. Как отопительные приборы используются электрокотлы, электрокамины и конвекторы.

Современные технологии

Все более популярными становятся инновационные способы отопления:

Инфракрасные полы

Инфракрасные полы появились недавно, они работают от электросетей. Такие полы устанавливаются на стяжку или бетон.

Специальные нагревательные элементы излучают инфракрасное тепло, которое обогревает предметы, а от них нагревается окружающий воздух. Контроль за температурой осуществляется с помощью терморегуляторов.

Тепловые насосы

Тепловые насосы дорого стоят и сложны в установке, но очень экономичны при их дальнейшем использовании.

Специальный тепловой насос передает в систему отопления тепло, получаемое из почвы или воды.

Солнечные коллекторы

Солнечные коллекторы представляют собой уникальный комплекс по сбору тепловой энергии от солнца и передаче ее теплоносителю. К преимуществам данной системы можно отнести простоту установки, высокую эффективность и небольшую массу.

Теплоносителем могут служить масло, вода или антифриз. Однако такое отопление зависит от количества солнечных дней в году и может устанавливаться только в определенной местности.

Расчет системы водяного отопления

Прежде чем выбрать тип отопления нужно предварительно сделать расчет необходимой мощности нагревательного прибора и количество радиаторов. Правильный расчет влияет на эффективность и качество работы всей системы.

Мощность котла

Мощность котла для частного дома в 200 м². рассчитывается по следующей формуле: W=(S (площадь помещения)*Wуд (удельная мощность на 10 куб метров))/10.

Wуд зависит от региона, где располагается дом. Для средней части России данное значение равно 1,5. Также на 100 м² помещения требуется 10 кВт. Если площадь равна 200 м², то мощность котла = 200*1,5/10 =30 кВт.

Читайте также:  Как найти воду на участке для колодца и определить глубину ее залегания: обзор лучших методов

Количество радиаторов

Чтобы произвести полноценный расчет отопления важно знать количество необходимых радиаторов и секций. Зная теплоотдачу определенной секции, можно сделать расчет площади, которую она может обогреть.

Если теплоотдача одной секции равна 180 Вт, то делим эту величину на 100 и получаем 1,8 м. Если площадь дома равна 200 м², то 200 делим на 1,8 и получаем 111. Расчет показал, что 111 секций необходимо для прогревания частного дома площадью 200 м².

Грамотно рассчитав нужную мощность для обогрева помещения, можно выбрать наиболее эффективный вид отопления.

Необходимо учитывать не только цену за оборудование и монтаж, но и траты на дальнейшую эксплуатацию системы.

Определение мощности теплых полов

Если вы решили использовать в качестве обогрева «теплый пол»,
оборудование следует подбирать исходя из следующих показателей мощности:

  • для жилой комнаты или кухни мощность равняется 120-140 Вт/м²;
  • для застекленного балкона – 130-170 Вт/ м²;
  • для ванной около 150 Вт/м².

При расчете мощности важно учитывать и этаж здания. Например, для первого этажа этот показатель надо увеличивать на 20 %.

Расчет труб для теплого пола производится по следующей формуле:
L (длина труб) = AR (площадь жилья)/a (шаг укладки)+2*Lzu (длина подающих труб отопления) — 2*Ld (длина проходных отопительных труб).

Расчет воздушного отопления

При расчете системы воздушного отопления необходимо учитывать следующее: нагревание теплоносителя должно соответствовать категориям зданий, в которых подобное отопление устанавливается.
Объем расхода воздуха вычисляется по формуле:

Lb =3.6Qnp (тепловой поток)/ (C (теплоемкость теплоносителя) (t пр (темп. теплоносителя) — tв (темп. помещения)).

Температура теплоносителя рассчитывается так:
Tпр = tH (темп. на улице) + t (дельта изменения темп. в воздухонагревателе) + 0.001p (давление потока).

Своими руками

Водяное отопление частного дома своими руками

Правильно сделанное воздушное отопление – достаточно сложная система. Электричеством прогревать большой дом дорого. Так что наиболее оптимальное решение – организовать водяное отопление частного дома своими руками.

Выбор системы водяного отопления частного дома, осуществляемого своими руками

От выбранной системы отопления зависит, насколько сложной будет вся схема, сколько материалов потребуется на монтаж и на сколько трудным будет дальнейшее обслуживание. Так, естественная или принудительная циркуляция определяет зависимость системы отопления от электричества. А на количество труб, фитингов и других расходных материалов влияет схема разводки магистралей.

Следует внимательно отнестись к расчетам системы отопления, учитывая общие теплопотери дома и выбирая котел, трубы и радиаторы в соответствии с расчетами. В дальнейшем, при желании изменить один из элементов системы отопления, придется делать перерасчеты. В противном случае, возможны два варианта – в доме будет холодно, так как отопление не будет справляться с теплопотерями, или же слишком жарко и затраты на обогрев будут необоснованно завышенными.

Преимущества естественной и принудительной циркуляции

Водяное отопление с естественной циркуляцией функционирует за счет законов физики – горячая вода за счет меньшей плотности поднимается вверх, остывает и опускается вниз. Поэтому при выборе такой системы котел должен располагаться в самой низкой части здания, а уклон труб должен составлять 2 градуса или 5 мм на 1 м.

Частное строительство зачастую включат именно этот вариант, так как он не требует серьезных финансовых затрат и прост в исполнении. Но и для двухэтажного коттеджа это вполне приемлемое решение.

Особенно в поселках, где часто и подолгу отключают свет.

Недостатки у естественной циркуляции тоже есть:

  • необходимо обеспечить нужный уклон магистралей;
  • важно поддерживать давление в системе, для чего следует подобрать диаметр трубопровода в соответствии с высотой стояка;
  • придется минимизировать количество поворотов и переходников, снижающих давление;
  • используются только специальные вентили-термостаты, в которых потеря давления составляет не больше 1/3 от циркуляционного давления.

Принудительная циркуляция позволяет забыть о сложных расчетах и прокладывать магистрали удобным способом. Для обеспечения давления в схему встраивается циркуляционный насос, благодаря которому горячая вода поступает в батареи независимо от наклона труб.

Благодаря насосу удастся сэкономить на трубах, так как можно использовать меньший диаметр.

К минусам принудительной системы циркуляции относится:

  • зависимость от электричества – придется покупать свой генератор, если есть частые перебои с электроэнергией;
  • шум в котельной – незначительный, но все же слышимый звук работы насоса может мешать;
  • поддерживаемое котлом давление – нужно выбирать насос, создающий давление, которое сможет выдержать конкретный котел.

Оптимальным решением в плане комфорта и автономности можно считать комбинированную систему отопления, когда в схему естественной циркуляции встраивается насос и включается только при необходимости.

Однотрубная, двухтрубная или коллекторная схема?

Общая длина труб в магистрали напрямую влияет на себестоимость всей системы. Ведь количество радиаторов остается неизменным. Так, существует три вида схем разводки труб:

    Однотрубная схема. При таком подключении горячая вода поступает в первую батарею, выходит из нее, и направляется в следующую. Соответственно, последний в схеме радиатор будет холоднее первого.

Двухтрубная схема. Ко входу каждого радиатора подключается труба, отходящая от основного стояка с горячей водой, а к выходу – труба, соединенная с «обраткой». Такая схема позволяет поддерживать одинаковую температуру во всех батареях, но увеличивает количество труб.

Коллекторная схема. Довольно сложная система, при которой каждый радиатор подключается отдельно к коллекторам горячей и холодной воды. Длина магистралей увеличивается в два раза, зато водяной коллектор позволяет очень точно регулировать температуру для каждой батареи отдельно.

Коллекторы используются при постройке домов с комбинированными видами отопительных приборов – теплыми полами и радиаторами.

Расчет и монтаж таких систем лучше не делать самостоятельно, особенно если нет навыков и рука не набита на подобных работах.

Радиаторное отопление – простой и надежный выбор

Обогревать помещение батареями – самый простой вариант.

Современные радиаторы довольно просто монтировать и добавлять нужное количество секций. Ведь при простейшем расчете длины радиатора она должна составлять не меньше 75% ширины окна. Делается это для того, чтобы создать тепловую завесу перед оконным проемом и не дать холодному воздуху проникать в помещение.

Выбор батарей – какие подойдут для частного дома

Для частного домостроения подходят любые радиаторы, так как циркуляционное давление не превышает норм для самый «слабых» батарей. Так что тут можно дать волю фантазии и руководствоваться предпочтениями в дизайне и финансовыми возможностями.

Плюсы и минусы есть у всех материалов. Так, теплопроводность алюминия выше чем у биметалла, зато последний выдерживает гидравлические удары. А чугун, благодаря низкой тепловой инерционности, долго прогревается, зато и остается теплым после выключения обогрева.

Но существуют некоторые факторы, влияющие на долговечность системы отопления:

  • качество воды – в чугунных и стальных радиаторах могут образовываться отложения, снижающие теплоотдачу, алюминиевые же подвержены коррозии при pH5;
  • открытая или закрытая система – в открытой системе алюминиевые батареи не образуют газов, а стальные служат дольше за счет образования «защитной» пленки на внутренней поверхности труб;
  • наличие антифриза в системе – прокладки в секционных радиаторах начнут протекать через 3-5 лет, если они не рассчитаны на использование не водяного теплоносителя, поэтому нужно внимательно изучить, какой теплоноситель рекомендован производителем батарей;
  • ширина каналов в радиаторах – узкие каналы быстрее засоряются, что снижает проходимость теплоносителя и крайне негативно сказывается на системах с естественной циркуляцией.

Виды подключения и их эффективность

Существует шесть вариантов подключения радиаторов, от которых будет зависеть эффективность теплоотдачи:

  1. Диагональное подключение, где вход находится сверху, а выход – снизу. Обеспечивает равномерное распределение тепла в радиаторе и максимальную теплоотдачу.
  2. Подключение снизу-снизу, или «ленинградка». Позволяет скрыть коммуникации, но снижает теплоотдачу на 12%.
  3. Диагональ с входом снизу и выходом сверху. Малоэффективна, так как часть батареи всегда будет холоднее из-за нарушения законов физики, когда холодная вода опускается, а выйти ей некуда.
  4. Вход сверху и выход снизу с одной стороны позволяют подключать батареи к расположенным рядом стоякам, практически не снижая мощности. Подходит для радиаторов с количеством секций до 10 шт.
  5. Замена местами входа и выхода при одностороннем подключении снижает мощность на 22%. Все из-за той же физики.
  6. Вход и выход находятся на одном отверстии. Осуществляется с помощью специального подключения «рапира». Позволяет минимизировать длину труб, но сильно снижает мощность радиаторов.

Кроме выбора оптимального подключения следует учесть и положение батарей. Находясь в нише, под широким подоконником или будучи закрыты экранами, они греют существенно хуже. В таких случаях к рассчитанной мощности нужно прибавить корректировочный коэффициент k.

Монтаж радиаторов

С установкой радиаторов, не требующих сварочных работ, справится даже начинающий строитель. Именно поэтому биметаллические батареи стали очень популярными, несмотря на свою высокую цену. Для сборки понадобятся муфты с внутренней и наружной резьбой, комплект футорок, краны (на входе можно установить термостатические для регулировки температуры), трубы нужной длинны, а для однотрубного подключения – еще и тройники для установки байпаса.

Очень доступно о подключении батареи показано на видео:

Теплый пол, как альтернатива радиаторам

Теплый пол является низкотемпературной системой отопления и позволяет существенно сэкономить в долгосрочной перспективе. За счет большей площади обогрева и равномерному распределению тепла, исключаются холодные зоны в помещении.

Но затраты на укладку водяного теплого пола гораздо выше монтажа простых радиаторов.

Способы укладки труб, шаг и длина контура

Трубы теплого пола укладываются непрерывным контуром, в котором нагретый теплоноситель входит с одного конца, а выходит уже остывшим с другого. Существует четыре основных способа укладки – двойная, простая и угловая змейка и улитка.

Равномерный прогрев пола обеспечивают спираль и двойная змейка, но и трубы на такую укладку идет в два раза больше.

Максимальна длина одного контура (непрерывной трубы) зависит от диаметра и материала труб. Так, для металлопластиковых труб диаметром 16 мм или из сшитого полиэтилена 18 мм разрешен контур длиной 80 м. А металлопластиковые трубы 20 мм можно укладывать длинной до 120 м. Шаг труб (расстояние между ними) равно диаметру, умноженному на 100.

Если площадь пола большая, она делится на равные сектора, где укладываются отдельные контуры, подключаемые к одному коллектору.

Монтаж теплого пола

После расчета теплого пола можно приступать к его монтажу. Если не планируется в нижних помещениях делать отопление с помощью теплого потолка и лучистой энергии, на перекрытия укладывается слой утеплителя и застилается отражающим материалом. Существует специальная фольга с разметкой, на которой легко делать петли одинакового размера.

Перед заливкой стяжки проводится проверка теплого пола – опрессовка. Для этого уложенные и подключенные к коллектору трубы заполняются водой под давлением 2.5-2.8 атм., или воздухом, но под давлением 4-5 атм. Важно создавать высокое давление только в трубах теплого пола – котлы зачастую не рассчитаны на такую нагрузку.

После проверки выставляются маяки, по которым будет выравниваться бетонная стяжка.

Толщина залитого слоя не должна превышать 5 см. Все остальные работы можно проводить только после полного застывания стяжки.

Организация водяного отопления – ответственный момент. Без уверенности в своих силах лучше сложную работу доверить профессионалам!

Типовые схемы систем отопления и способы подключения радиаторов

Системами отопления являются искусственно созданные инженерные сети различных сооружений, основными функциями которых является обогрев зданий в зимнее и переходное время года, компенсация всех теплопотерь строительных конструкций, а также поддержание параметров воздуха на комфортном уровне.

Разновидности разводки отопления

В зависимости от способа подвода теплоносителя к радиаторам распространение получили следующие схемы систем обогрева зданий и сооружений:

Данные способы отопления принципиально различаются друг от друга, и каждый обладает как положительными свойствами, так и отрицательными.

Однотрубная схема отопительных систем

Однотрубная система отопления: вертикальная и горизонтальная разводка.

В однотрубной схеме систем отопления подвод горячего теплоносителя (подача) к радиатору и отвод остывшего (обратка) осуществляется по одной трубе. Все приборы относительно направления движения теплоносителя соединены между собой последовательно. Поэтому температура теплоносителя на входе в каждый последующий радиатор по стояку значительно снижается после снятия тепла с предыдущего радиатора. Соответственно теплоотдача радиаторов с удалением от первого прибора снижается.

Такие схемы используются, в основном, в старых системах центрального теплоснабжения многоэтажных зданий и в автономных системах гравитационного типа (естественная циркуляция теплоносителя) в частных жилых домах. Главным определяющим недостатком однотрубной системы является невозможность независимой регулировки теплоотдачи каждого радиатора в отдельности.

Для устранения этого недостатка возможно использование однотрубной схемы с байпасом (перемычкой между подачей и обраткой), но и в этой схеме первый радиатор будет на ветке всегда самый горячий, а последний самым холодным.

В многоэтажных домах используется вертикальная однотрубная система отопления.

В многоэтажных домах использование такой схемы позволяет экономить на длине и стоимости подводящих сетей. Как правило, отопительная система выполнена в виде вертикальных стояков, проходящих через все этажи здания. Теплоотдача радиаторов рассчитывается при проектировании системы и не может быть отрегулирована с помощью радиаторных вентилей или другой регулирующей арматуры. При современных требованиях к комфортным условиям в помещениях, эта схема подключения приборов водяного обогрева не удовлетворяет требованиям жителей квартир, находящихся на разных этажах, но присоединенных к одному стояку системы отопления. Потребители тепла вынуждены «терпеть» перегрев или недогрев температуры воздуха в переходный осенний и весенний период.

Отопление по однотрубной схеме в частном доме.

В частных домах однотрубная схема используется в гравитационных отопительных сетях, в которых циркуляция горячей воды осуществляется благодаря дифференциалу плотностей нагретого и остывшего теплоносителей. Поэтому такие системы получили название естественных. Главным плюсом этой системы является энергонезависимость. Когда, например, при отсутствии в системе циркуляционного насоса, подключаемого к сетям электроснабжения и, в случае перебоев с энергопитанием, система отопления продолжает функционировать.

Главным недостатком гравитационной однотрубной схемы подключения является неравномерное распределение температуры теплоносителя по радиаторам. Первые радиаторы на ветке будут самые горячие, а по мере удаления от источника тепла температура будет падать. Металлоемкость гравитационных систем всегда выше, чем у принудительных за счет большего диаметра трубопроводов.

Видео о устройстве однотрубной схемы отопления в многоквартирном доме:

Двухтрубная схема отопительных систем

В двухтрубных схемах подвод горячего теплоносителя к радиатору и отвод остывшего из радиатора осуществляются по двум разным трубопроводам отопительных систем.

Существует несколько вариантов двухтрубных схем: классическая или стандартная, попутная, веерная или лучевая.

Двухтрубная классическая разводка

Классическая двухтрубная схема разводки система отопления.

В классической схеме направление движения теплоносителя в подающем трубопроводе противоположно движению в обратном трубопроводе. Эта схема наиболее распространена в современных системах отопления как в многоэтажном строительстве, так и в частном индивидуальном. Двухтрубная схема позволяет равномерно распределять теплоноситель между радиаторами без потерь температуры и эффективно регулировать теплоотдачу в каждом помещении, в том числе автоматически путем использования термостатических клапанов с установленными термоголовками.

Такое устройство имеет двухтрубная система отопления в многоэтажном доме.

Попутная схема или «петля Тихельмана»

Попутная схема разводки отопления.

Попутная схема является вариацией классической схемы с тем отличием, что направление движения теплоносителя в подаче и обратке совпадает. Такая схема применяется в системах отопления с длинными и удаленными ветками. Использование попутной схемы позволяет уменьшить гидравлическое сопротивление ветки и равномерно распределить теплоноситель по всем радиаторам.

Веерная (лучевая)

Веерная или лучевая схема используется в многоэтажном строительстве для поквартирного отопления с возможностью установки на каждую квартиру прибора учета тепла (теплосчетчика) и в частном домостроении в системах с поэтажной разводкой трубопроводов. При веерной схеме в многоэтажном доме на каждом этаже устанавливается коллектор с выходами на все квартиры отдельного трубопровода и установленным теплосчетчиком. Это позволяет каждому владельцу квартиры учитывать и оплачивать только им потребленное тепло.

Веерная или лучевая система отопления.

В частном доме веерная схема используется для поэтажного распределения трубопроводов и для лучевого подключения каждого радиатора к общему коллектору, т. е. к каждому радиатору походит отдельная труба подачи и обратки от коллектора. Такой способ подключения позволяет максимально равномерно рассредоточить теплоноситель по радиаторам и уменьшить гидравлические потери всех элементов системы отопления.

Обратите внимание! При веерной разводке трубопроводов в пределах одного этажа монтаж осуществляется цельными (не имеющими разрывов и разветвлений) отрезками труб. При использовании полимерных многослойных или медных труб все трубопроводы могут быть залиты в бетонную стяжку, тем самым снижается вероятность разрыва или подтекания в местах состыковки элементов сети.

Разновидности подключения радиаторов

Основными способами подключения приборов отопительных систем является несколько типов:

  • Боковое (стандартное) подключение;
  • Диагональное подключение;
  • Нижнее (седельное) подключение.

Боковое подключение

Боковое подключение радиатора.

Подключение с торца прибора – подача и обратка находятся с одной стороны радиатора. Это наиболее распространенный и эффективный способ подключения, он позволяет снять максимальное количество тепла и использовать полностью теплоотдачу радиатора. Как правило, подача находится сверху, а обратка снизу. При использовании специальной гарнитуры возможно подключение снизу–вниз, это позволяет максимально спрятать трубопроводы, но снижает теплоотдачу радиатора на 20 – 30%.

Диагональное подключение

Диагональное подключение радиатора.

Подключение по диагонали радиатора – подача находится с одной стороны прибора сверху, обратка с другой стороны снизу. Такой тип подключения используется в тех случаях, когда длина секционного радиатора превышает 12 секций, а панельного 1200 мм. При установке длинных радиаторов с боковым подключением присутствует неравномерность прогрева поверхности радиатора в наиболее удаленной от трубопроводов части. Чтобы радиатор прогревался равномерно, применяют диагональное подключение.

Нижнее подключение

Нижнее подключение с торцов радиатора

Подключение с низа прибора – подача и обратка находятся внизу радиатора. Такое подключение используется для максимально скрытого монтажа трубопроводов. При монтаже секционного прибора отопления и подключения его нижним способом подающий трубопровод подходит с одной стороны радиатора, а обратный с другой стороны нижнего патрубка. Однако эффективность теплоотдачи радиаторов при такой схеме снижается на 15-20%.

Нижнее подключение радиатора.

В случае когда нижнее подключение используется для стального панельного радиатора, тогда все патрубки на радиаторе находятся в нижнем торце. Конструкция самого радиатора при этом выполнена таким образом, что подача поступает по коллектору сначала в верхнюю часть, а затем обратка собирается в нижнем коллекторе радиатора, тем самым теплоотдача радиатора не снижается.

Нижнее подключение в однотрубной схеме отопления.

Расчет отопления частного дома

Для климата средней полосы тепло в доме является насущной потребностью. Вопрос отопления в квартирах решается районными котельными, ТЭЦ или тепловыми станциями. А как же быть владельцу частного жилого помещения? Ответ один — установка отопительной техники, необходимой для комфортного проживания в доме, она же — автономная система отопления. Чтобы не получить в результате установки жизненно необходимой автономной станции груду металлолома, к проектированию и монтажу следует отнестись скрупулёзно и с большой ответственностью.

Расчет тепловых потерь

Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.

Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:

  • площадь комнаты — 18 кв. м. (6 м х 3 м)
  • 1 этаж
  • потолок высотой 2,75 м,
  • наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
  • окно — 2 шт., 1,6 м х 1,1 м каждое
  • пол — деревянный утепленный, снизу — подпол.

Расчеты площадей поверхностей:

  • наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
  • окон: S2 = 2×1,1×1,6=3,52 кв. м.
  • пола: S3 = 6×3=18 кв. м.
  • потолка: S4 = 6×3= 18 кв. м.

Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:

  • Q1 = S1 х 62 = 20,78×62 = 1289 Вт
  • Q2= S2 x 135 = 3×135 = 405 Вт
  • Q3=S3 x 35 = 18×35 = 630 Вт
  • Q4 = S4 x 27 = 18×27 = 486 Вт
  • Q5=Q+ Q2+Q3+Q4=2810 Bт

Итого: суммарные теплопотери комнаты в самые холодные дни равны 2,81 кВт. Это число записывается со знаком минус и теперь известно сколько тепла необходимо подать в комнату для комфортной температуры в ней.

Расчет гидравлики

Переходим к наиболее сложному и важному гидравлическому расчету — гарантии эффективной и надежной работы ОС.

Единицами расчета гидравлической системы являются:

  • диаметр трубопровода на участках отопительной системы;
  • величины давлений сети в разных точках;
  • потери давления теплоносителя;
  • гидравлическая увязка всех точек системы.

Перед расчетом нужно предварительно выбрать конфигурацию системы, тип трубопровода и регулирующей/запорной арматуры. Затем определиться с видом приборов отопления и их расположением в доме. Составить чертеж индивидуальной системы отопления с указанием номеров, длины расчетных участков и тепловых нагрузок. В заключении выявить основное кольцо циркуляции, включающее поочередные отрезки трубопровода, направленные к стояку (при однотрубной системе) или к самому уделенному прибору отопления (при двухтрубной системе) и обратно к источнику тепла.

При любом режиме эксплуатации СО необходимо обеспечить бесшумность работы. В случае отсутствия неподвижных опор и компенсаторов на магистралях и стояках возникает механический шум из-за температурного удлинения. Использование медных или стальных труб способствует распространению шума по всей системе отопления.

Из-за значительной турбулизации потока, который возникает при увеличенном движении теплоносителя в трубопроводе и усиленном дросселировании потока воды регулирующим клапаном, возникает гидравлический шум. Поэтому, учитывая возможность возникновения шума, необходимо на всех этапах гидравлического расчета и конструирования — подбор насосов и теплообменников, балансовых и регулирующих клапанов, анализ температурных удлинений трубопровода — выбирать соответствующие для заданных исходных условий оптимальное оборудование и арматуру.

Изготовить отопление в частном доме возможно и самостоятельно. Возможные варианты представлены в данной статье: https://teplo.guru/sistemy/varianty-otopleniya-doma-svoimi-rukami.html

Перепады давления в СО

Гидравлический расчет включает имеющиеся перепады давления на вводе отопительной системы:

  • диаметры участков СО
  • регулирующие клапаны, которые устанавливаются на ветках, стояках и подводках приборов отопления;
  • разделительные, перепускные и смесительные клапаны;
  • балансовые клапаны и величины их гидравлической настройки.

При пуске отопительной системы балансовые клапаны настраиваются на схемные параметры настройки.

На схеме отопления обозначается расчетная тепловая нагрузка каждого из отопительных приборов, которая равна тепловой расчетной нагрузке помещения, Q4. В случае наличия более одного прибора необходимо разделить величину нагрузки между ними.

Далее необходимо определить основное циркуляционное кольцо. В однотрубной системе количество колец равно числу стояков, а в двухтрубной — количеству приборов отопления. Клапаны баланса предусматривают для каждого кольца циркуляции, поэтому количество клапанов в однотрубной системе равно числу вертикальных стояков, а в двухтрубной — количеству приборов отопления. В двухтрубной СО балансовые вентили располагают на обратной подводке прибора отопления.

Санитарные нормы и правила, касающиеся отопления в частном доме, представлены здесь: https://teplo.guru/normy/snipy-po-otopleniyu.html

Расчет циркуляционного кольца включает:

  • систему с попутным движением воды. В однотрубных системах кольцо располагается в самом нагруженном стояке, в двухтрубных — в нижнем приборе отопления более нагруженного стояка;
  • систему с тупиковым движением теплоносителя. В однотрубных системах кольцо располагается в самом нагруженном и удаленном стояке, в двухтрубных — в нижнем приборе отопления нагруженного удаленного стояка;
  • горизонтальную систему, где кольцо располагается в более нагруженной ветви 1-го этажа.

Необходимо из двух направлений расчета гидравлики основного кольца циркуляции выбрать одно.

При первом направлении расчета, диаметр трубопровода и потери давления в кольце циркуляции определяются по задаваемой скорости движения воды на каждом участке основного кольца с последующим подбором насоса циркуляции. Напор насоса Pн, Па определяется в зависимости от вида отопительной системы:

  • для вертикальных бифилярных и однотрубных систем: Рн = Pс. о. — Ре
  • для горизонтальных бифилярных и однотрубных, двухтрубных систем:Рн = Pс. о. — 0,4Ре
  • Pс.о — потери давления в основном кольце циркуляции, Па;
  • Ре — естественное циркуляционное давление, которое возникает вследствие понижения температуры теплоносителя в трубах кольца и приборах отопления, Па.

В горизонтальных трубах скорость теплоносителя принимают от 0,25 м/с, для возможности удаления воздуха из них. Оптимальная расчетная движения теплоносителя в трубах из стали до 0,5 м/с, полимерных и медных — до 0,7 м/с.

После расчета основного кольца циркуляции производят расчет остальных колец путем определения известного давления в них и подбора диаметров по примерной величине удельных потерь Rср.

Применяется направление в системах с местным теплогенератором, в СО при зависимом (при недостаточном давлении на вводе тепловой системы) или независимом присоединении к тепловым СО.

Второе направление расчета заключается в подборе диаметра трубы на расчетных участках и определении потерь давления в кольце циркуляции. Рассчитывается по изначально заданной величине циркуляционного давления. Диаметры участков трубопровода подбирают по примерной величине удельных потерь давления Rср. Этот принцип применяется в расчетах отопительных систем с зависимым присоединением к тепловым сетям, с естественной циркуляцией.

Для исходного параметра расчета нужно определить величину имеющегося циркуляционного перепада давления PP, где PP в системе с естественной циркуляцией равно Pe, а в насосных системах — от вида отопительной системы:

  • в вертикальных однотрубных и бифилярных системах: PР = Рн + Ре
  • в горизонтальных однотрубных, двухтрубных и бифилярных системах: PР = Рн + 0,4.Ре

Расчет трубопроводов СО

Следующей задачей расчета гидравлики является определение диаметра трубопровода. Расчет производится с учетом циркуляционного давления, установленном для данной СО, и тепловой нагрузки. Следует отметить, что в двухтрубных СО с водяным теплоносителем главное циркуляционное кольцо располагается в нижнем приборе отопления, более нагруженного и удаленного от центра стояка.

По формуле Rср = β*?рр/∑L; Па/м определяем среднее значение на 1 метр трубы удельной потери давления от трения Rср, Па/м, где:

  • β — коэффициент, учитывающий часть потери давления на местные сопротивления от общей суммы расчётного циркуляционного давления (для СО с искусственной циркуляцией β=0,65);
  • рр — имеющееся давление в принятой СО, Па;
  • ∑L — сумма всей длины расчётного кольца циркуляции, м.

Расчет количества радиаторов при водяном отоплении

Формула расчета

В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.

Например: один кубометр кирпичного дома с качественными стеклопакетами потребует 0,034 кВт; из панели — 0,041 кВт; возведенные согласно всех современных требований — 0,020 кВт.

Расчет производим следующим образом:

  • определяем тип помещения и выбираем вид радиаторов;
  • умножаем площадь дома на указанный тепловой поток;
  • делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.

Например: комната 6x4x2,5 м панельного дома (тепловой поток дома 0,041 кВт), объем комнаты V = 6x4x2,5 = 60 куб. м. оптимальный объем теплоэнергии Q = 60×0, 041 = 2,46 кВт3, количество секций N = 2,46 / 0,16 = 15,375 = 16 секций.

Характеристики радиаторов

Тип радиатора

Тип радиатораМощность секцииКоррозийное воздействие кислородаОграничения по PhКоррозийное воздействие блуждающих токовДавление рабочее/ испытательноеГарантийный срок службы (лет)
Чугунный1106.5 — 9.06−9 /12−1510
Алюминиевый175−1997— 8+10−20 / 15−303−10
Трубчатый
Стальной
85+6.5 — 9.0+6−12 / 9−18.271
Биметаллический199+6.5 — 9.0+35 / 573−10

Правильно проведя расчет и монтаж из высококачественных комплектующих, вы обеспечите ваш дом надежной, эффективной и долговечной индивидуальной системой отопления.

Видео осуществления гидравлического расчета

Ссылка на основную публикацию